Free Access
Issue
ESAIM: M2AN
Volume 32, Number 6, 1998
Page(s) 773 - 788
DOI https://doi.org/10.1051/m2an/1998320607731
Published online 27 January 2017
  1. P. J. BARRY, de Boor-Fix dual functionals and algorithms for Tchebycheffian B-spline curves, Constructive Approximation 12 (1996), 385-408. [MR: 1405005] [Zbl: 0854.41010]
  2. P. J. BARRY, N. DYN, R. N. GOLDMAN and C. A. MICCHELLI, Identities for piecewise polynomial spaces determined by connection matrices, Aequationes Mathematicae 42 (1991), 123-136. [EuDML: 137424] [MR: 1125625] [Zbl: 0769.41007]
  3. D. BISTER and H. PRAUTZSCH, A new approach to Tchebycheffian B-splines, in Curves and Surfaces with Applications to CAGD, Vanderbilt University Press (1997), 35-42. [MR: 1659765] [Zbl: 0938.65020]
  4. N. DYN, A. EDELMAN and C. A. MICHELLI, On locally supported basis functions for the representation of geometrically continuous curves, Analysis 7 (1987), 313-341. [MR: 928645] [Zbl: 0633.41005]
  5. N. DYN and A. RON, Recurrence relations for Tchebycheffian B-splines, Journal d'Analyse Mathématique 51 (1988), 118-138. [MR: 963152] [Zbl: 0675.41021]
  6. S. KARLIN, Total Positivity, Stanford University Press, Stanford, 1968. [MR: 230102] [Zbl: 0219.47030]
  7. S. KARLIN and W. J. STUDDEN, Tchebycheff Systems, Wiley Interscience, New York, 1966. [MR: 204922] [Zbl: 0153.38902]
  8. S. KARLIN and Z. ZIEGLER, Chebyshevian spline functions, SIAM Journal Numerical Analysis 3 (1966), 514-543. [MR: 216206] [Zbl: 0171.31002]
  9. R. KULKARNI and P.-J. LAURENT, Q-splines, Numerical Algorithms 1 (1991), 45-74. [MR: 1135287] [Zbl: 0797.65003]
  10. R. KULKARNI, P.-J. LAURENT and M.-L. MAZURE, Non affine blossoms and subdivision for Q-splines, in Math. Methods in Computer Aided Geometric Design II, Academic Press, New York, 1992, 367-380. [MR: 1172817]
  11. P.-J. LAURENT, M.-L. MAZURE and V. T. MAXIM, Chebyshev splines and shape parameters, RR 980M IMAG, Université Joseph Fourier, Grenoble, September 1997, Numerical Algorithms 15 (1997), 373-383. [MR: 1605676] [Zbl: 0891.65013]
  12. P.-J. LAURENT, M.-L. MAZURE and G. MORIN, Shape effects with polynomial Chebyshev splines, in Curves and Surfaces with Applications in CAGD, Vanderbilt University Press, 1997, 255-262. [MR: 1659752] [Zbl: 0938.65019]
  13. T. LYCHE, A recurrence relation for Chebyshevian B-splines, Constructive Approximation 1 (1985), 155-173. [MR: 891537] [Zbl: 0583.41011]
  14. M.-L. MAZURE, Blossoming of Chebyshev splines, In Mathematical Methods for Curves and Surfaces, Vanderbilt University Press, 1995, 355-364. [MR: 1356981] [Zbl: 0835.65033]
  15. M.-L. MAZURE, Chebyshev spaces, RR 952M IMAG, Université Joseph Fourier, Grenoble, January 1996.
  16. M.-L. MAZURE, Chebyshev blossoming, RR 953M IMAG, Université Joseph Fourier, Grenoble, January 1996.
  17. M.-L. MAZURE, Blossoming: a geometric approach, RR 968M IMAG, Université Joseph Fourier, Grenoble, January 1997, to appear in Constructive Approximation. [MR: 1660085] [Zbl: 0924.65010]
  18. M.-L. MAZURE, Vandermonde type determinants and blossoming, The Fourth International Conference on Mathematical Methods for Curves and Surfaces, Lillehammer, Norway, July 3-8, 1997, RR 979M IMAG, Université Joseph Fourier, Grenoble, September 1997, Advances in Computational Math. 8 (1998), 291-315. [MR: 1637609] [Zbl: 0906.65014]
  19. M.-L. MAZURE and P.-J. LAURENT, Affine and non affine blossoms, in Computational Geometry, World Scientific, 1993, 201-230. [MR: 1339313]
  20. M.-L. MAZURE and P.-J. LAURENT, Marsden identities, blossoming and de Boor-Fix formula, in Advanced Topics in Multivariate Approximation, World Scientific Pub., 1996, 227-242. [MR: 1661413] [Zbl: 1273.41029]
  21. M.-L. MAZURE and P.-J. LAURENT, Piecewise smooth spaces in duality: application to blossoming, RR696-M, IMAG, Université Joseph Fourier, Grenoble, January 1997, to appear in Journal of Approximation Theory. [MR: 1692244] [Zbl: 0952.41010]
  22. M.-L. MAZURE and P.-J. LAURENT, Polynomial Chebyshev Splines, to appear. [MR: 1688408] [Zbl: 0916.68152]
  23. M.-L. MAZURE and H. POTTMANN, Tchebycheff curves, in Total Positivity and its Applications, Kluwer Academic Pub. (1996), 187-218. [MR: 1421603] [Zbl: 0902.41018]
  24. C. A. MICCHELLI, Mathematical Aspects of Geometric Modeling, CBMS-NSF Regional Conference Series in Applied Math. 65, SIAM, Philadelphie, 1995. [MR: 1308048] [Zbl: 0864.65008]
  25. H. POTTMANN, The geometry of Tchebycheffian splines, Computer Aided Geometric Design 10 (1993), 181-210. [MR: 1235152] [Zbl: 0777.41016]
  26. H. POTTMANN and M. G. WAGNER, Helix splines as an example of affine Tchebycheffian splines, Advances in Computational Math. 2 (1994), 123-142. [MR: 1266027] [Zbl: 0832.65008]
  27. L. RAMSHAW, Blossoms are polar forms, Computer Aided Geometric Design 6 (1989), 323-358. [MR: 1030618] [Zbl: 0705.65008]
  28. L. L. SCHUMAKER, Spline Functions: Basic Theory, Wiley Interscience, New York, 1981. [MR: 606200] [Zbl: 0449.41004]
  29. H.-P. SEIDEL, New algorithms and techniques for Computing with geometrically continuous spline curves of arbitrary degree, Math. Modelling and Numerical Analysis 26 (1992), 149-176. [EuDML: 193651] [MR: 1155005] [Zbl: 0752.65008]
  30. M. G. WAGNER and H. POTTMANN, Symmetric Tchebycheffian B-splines schemes, in Curves and Surfaces in Geometric Design, A. K. Peters, Wellesley, MA, 1994, 483-490. [MR: 1302230] [Zbl: 0814.65008]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you