Free Access
Volume 32, Number 6, 1998
Page(s) 773 - 788
Published online 27 January 2017
  1. P. J. BARRY, de Boor-Fix dual functionals and algorithms for Tchebycheffian B-spline curves, Constructive Approximation 12 (1996), 385-408. [MR: 1405005] [Zbl: 0854.41010] [Google Scholar]
  2. P. J. BARRY, N. DYN, R. N. GOLDMAN and C. A. MICCHELLI, Identities for piecewise polynomial spaces determined by connection matrices, Aequationes Mathematicae 42 (1991), 123-136. [EuDML: 137424] [MR: 1125625] [Zbl: 0769.41007] [Google Scholar]
  3. D. BISTER and H. PRAUTZSCH, A new approach to Tchebycheffian B-splines, in Curves and Surfaces with Applications to CAGD, Vanderbilt University Press (1997), 35-42. [MR: 1659765] [Zbl: 0938.65020] [Google Scholar]
  4. N. DYN, A. EDELMAN and C. A. MICHELLI, On locally supported basis functions for the representation of geometrically continuous curves, Analysis 7 (1987), 313-341. [MR: 928645] [Zbl: 0633.41005] [Google Scholar]
  5. N. DYN and A. RON, Recurrence relations for Tchebycheffian B-splines, Journal d'Analyse Mathématique 51 (1988), 118-138. [MR: 963152] [Zbl: 0675.41021] [Google Scholar]
  6. S. KARLIN, Total Positivity, Stanford University Press, Stanford, 1968. [MR: 230102] [Zbl: 0219.47030] [Google Scholar]
  7. S. KARLIN and W. J. STUDDEN, Tchebycheff Systems, Wiley Interscience, New York, 1966. [MR: 204922] [Zbl: 0153.38902] [Google Scholar]
  8. S. KARLIN and Z. ZIEGLER, Chebyshevian spline functions, SIAM Journal Numerical Analysis 3 (1966), 514-543. [MR: 216206] [Zbl: 0171.31002] [Google Scholar]
  9. R. KULKARNI and P.-J. LAURENT, Q-splines, Numerical Algorithms 1 (1991), 45-74. [MR: 1135287] [Zbl: 0797.65003] [Google Scholar]
  10. R. KULKARNI, P.-J. LAURENT and M.-L. MAZURE, Non affine blossoms and subdivision for Q-splines, in Math. Methods in Computer Aided Geometric Design II, Academic Press, New York, 1992, 367-380. [MR: 1172817] [Google Scholar]
  11. P.-J. LAURENT, M.-L. MAZURE and V. T. MAXIM, Chebyshev splines and shape parameters, RR 980M IMAG, Université Joseph Fourier, Grenoble, September 1997, Numerical Algorithms 15 (1997), 373-383. [MR: 1605676] [Zbl: 0891.65013] [Google Scholar]
  12. P.-J. LAURENT, M.-L. MAZURE and G. MORIN, Shape effects with polynomial Chebyshev splines, in Curves and Surfaces with Applications in CAGD, Vanderbilt University Press, 1997, 255-262. [MR: 1659752] [Zbl: 0938.65019] [Google Scholar]
  13. T. LYCHE, A recurrence relation for Chebyshevian B-splines, Constructive Approximation 1 (1985), 155-173. [MR: 891537] [Zbl: 0583.41011] [Google Scholar]
  14. M.-L. MAZURE, Blossoming of Chebyshev splines, In Mathematical Methods for Curves and Surfaces, Vanderbilt University Press, 1995, 355-364. [MR: 1356981] [Zbl: 0835.65033] [Google Scholar]
  15. M.-L. MAZURE, Chebyshev spaces, RR 952M IMAG, Université Joseph Fourier, Grenoble, January 1996. [Google Scholar]
  16. M.-L. MAZURE, Chebyshev blossoming, RR 953M IMAG, Université Joseph Fourier, Grenoble, January 1996. [Google Scholar]
  17. M.-L. MAZURE, Blossoming: a geometric approach, RR 968M IMAG, Université Joseph Fourier, Grenoble, January 1997, to appear in Constructive Approximation. [MR: 1660085] [Zbl: 0924.65010] [Google Scholar]
  18. M.-L. MAZURE, Vandermonde type determinants and blossoming, The Fourth International Conference on Mathematical Methods for Curves and Surfaces, Lillehammer, Norway, July 3-8, 1997, RR 979M IMAG, Université Joseph Fourier, Grenoble, September 1997, Advances in Computational Math. 8 (1998), 291-315. [MR: 1637609] [Zbl: 0906.65014] [Google Scholar]
  19. M.-L. MAZURE and P.-J. LAURENT, Affine and non affine blossoms, in Computational Geometry, World Scientific, 1993, 201-230. [MR: 1339313] [Google Scholar]
  20. M.-L. MAZURE and P.-J. LAURENT, Marsden identities, blossoming and de Boor-Fix formula, in Advanced Topics in Multivariate Approximation, World Scientific Pub., 1996, 227-242. [MR: 1661413] [Zbl: 1273.41029] [Google Scholar]
  21. M.-L. MAZURE and P.-J. LAURENT, Piecewise smooth spaces in duality: application to blossoming, RR696-M, IMAG, Université Joseph Fourier, Grenoble, January 1997, to appear in Journal of Approximation Theory. [MR: 1692244] [Zbl: 0952.41010] [Google Scholar]
  22. M.-L. MAZURE and P.-J. LAURENT, Polynomial Chebyshev Splines, to appear. [MR: 1688408] [Zbl: 0916.68152] [Google Scholar]
  23. M.-L. MAZURE and H. POTTMANN, Tchebycheff curves, in Total Positivity and its Applications, Kluwer Academic Pub. (1996), 187-218. [MR: 1421603] [Zbl: 0902.41018] [Google Scholar]
  24. C. A. MICCHELLI, Mathematical Aspects of Geometric Modeling, CBMS-NSF Regional Conference Series in Applied Math. 65, SIAM, Philadelphie, 1995. [MR: 1308048] [Zbl: 0864.65008] [Google Scholar]
  25. H. POTTMANN, The geometry of Tchebycheffian splines, Computer Aided Geometric Design 10 (1993), 181-210. [MR: 1235152] [Zbl: 0777.41016] [Google Scholar]
  26. H. POTTMANN and M. G. WAGNER, Helix splines as an example of affine Tchebycheffian splines, Advances in Computational Math. 2 (1994), 123-142. [MR: 1266027] [Zbl: 0832.65008] [Google Scholar]
  27. L. RAMSHAW, Blossoms are polar forms, Computer Aided Geometric Design 6 (1989), 323-358. [MR: 1030618] [Zbl: 0705.65008] [Google Scholar]
  28. L. L. SCHUMAKER, Spline Functions: Basic Theory, Wiley Interscience, New York, 1981. [MR: 606200] [Zbl: 0449.41004] [Google Scholar]
  29. H.-P. SEIDEL, New algorithms and techniques for Computing with geometrically continuous spline curves of arbitrary degree, Math. Modelling and Numerical Analysis 26 (1992), 149-176. [EuDML: 193651] [MR: 1155005] [Zbl: 0752.65008] [Google Scholar]
  30. M. G. WAGNER and H. POTTMANN, Symmetric Tchebycheffian B-splines schemes, in Curves and Surfaces in Geometric Design, A. K. Peters, Wellesley, MA, 1994, 483-490. [MR: 1302230] [Zbl: 0814.65008] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you