Free Access
Issue
ESAIM: M2AN
Volume 34, Number 2, March/April 2000
Special issue for R. Teman's 60th birthday
Page(s) 501 - 523
DOI https://doi.org/10.1051/m2an:2000153
Published online 15 April 2002
  1. J. Albert, J. Bona and J.C. Saut, Model equations for waves in stratified fluids. Proc. Roy. Soc. Lond. A 453 (1997) 1213-1260. [Google Scholar]
  2. S. Alinhac and P. Gérard, Opérateurs pseudo-différentiel et théorème de Nash-Moser. Éditions du CNRS, EDP Sciences (1991). [Google Scholar]
  3. J.M. Ash, J. Cohen and G. Wang, On strongly interacting internal solitary waves. J. Fourier Anal. and Appl. 5 (1996) 507-517. [Google Scholar]
  4. J. Bona, G. Ponce, J.C. Saut and M. Tom, A model system for strong interaction between internal solitary waves. Comm. Math. Phys. 143 (1992) 287-313. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales de l'ENS 14 (1981) 209-246. [Google Scholar]
  6. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations. GAFA 3 (1993) 107-156. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations II. The KdV equation. GAFA 3 (1993) 209-262. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation. GAFA 3 (1993) 315-341. [CrossRef] [MathSciNet] [Google Scholar]
  9. J.-Y. Chemin, Fluid parfaits incompressibles. Astérisque 230 (1995). [Google Scholar]
  10. R. Coifman and Y. Meyer, Au delà des operateurs pseudodifférentiels. Astérisque 57 (1978). [Google Scholar]
  11. I. Gallagher, Applications of Schochet's methods to parabolic equations. J. Math. Pures Appl. 77 (1998) 989-1054. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  12. J.A. Gear and R. Grimshaw, Weak and strong interactions between internal solitary waves. Stud. Appl. Math. 65 (1984) 235-258. [Google Scholar]
  13. J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain). Séminaire Bourbaki 796, Astérique 237 (1995) 163-187. [Google Scholar]
  14. J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system. J. Funct. Anal. 151 (1997) 384-436. [CrossRef] [MathSciNet] [Google Scholar]
  15. R. Grimshaw, Y. Zhu, Oblique interactions between internal solitary waves. Stud. Appl. Math. 92 (1994) 249-270. [Google Scholar]
  16. D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces. Revista Matematica Ibero-Americana 15 (1999) 1-36. [Google Scholar]
  17. R.J. Iório Jr, W.V.L. Nunes, On equations of KP-type. Proc. Roy. Soc. Edinburgh A 128 (1998) 725-743. [Google Scholar]
  18. P. Isaza, J. Mejia and V. Stallbohm, El problema de Cauchy para la ecuacion de Kadomtsev-Petviashvili (KP-II) en espacios de Sobolev Hs, s>0, preprint (1997). [Google Scholar]
  19. F. Linares, L2 global well-posedness of the initial value problem associated to the Benjamin equation. J. Differential Equations 152 (1999) 377-393. [CrossRef] [MathSciNet] [Google Scholar]
  20. C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equations. J. AMS 9 (1996) 573-603. [Google Scholar]
  21. C. Kenig, G. Ponce and L. Vega, Quadratic forms for 1-D semilinear Schrödinger equation. Trans. Amer. Math. Soc. 348 (1996) 3323-3353. [CrossRef] [MathSciNet] [Google Scholar]
  22. J.C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations. Indiana Univ. Math. J. 42 (1993) 1017-1029. [Google Scholar]
  23. R. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44 (1977) 705-714. [CrossRef] [MathSciNet] [Google Scholar]
  24. H. Takaoka, Well-posedness for the Kadomtsev-Petviashvili II equation, preprint (1998). [Google Scholar]
  25. N. Tzvetkov, Global low regularity solutions for Kadomtsev-Petviashvili equation. Diff. Int. Eq. (to appear). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you