Free Access
Issue
ESAIM: M2AN
Volume 34, Number 2, March/April 2000
Special issue for R. Teman's 60th birthday
Page(s) 377 - 398
DOI https://doi.org/10.1051/m2an:2000146
Published online 15 April 2002
  1. J.M. Ball and R.D. James, Proposed experimental test of a theory of fine microstructures and the two-well problem. Phil. Trans. R. Soc. Lond. A 338 (1992) 389-450. [CrossRef] [Google Scholar]
  2. J.M. Ball and F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253. [CrossRef] [MathSciNet] [Google Scholar]
  3. K. Bhattacharya, Theory of martensitic microstructure and the shape-memory effect, unpublished lecture notes. [Google Scholar]
  4. K. Bhattacharya and R.V. Kohn, Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials. Arch. Rat. Mech. Anal. 139 (1998) 99-180. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Braides, Homogenization of some almost periodic coercive functional. Rend. Accad. Naz. Sci. Detta XL, V. Ser., Mem. Mat. 9 (1985) 313-322. [Google Scholar]
  6. O.P. Bruno and G.H. Goldsztein, A fast algorithm for the simulation of polycrystalline misfits: martensitic transformations in two space dimensions, Proc. Roy. Soc. Lond. Ser. A (to appear). [Google Scholar]
  7. O.P. Bruno and G.H. Goldsztein, Numerical simulation of martensitic transformations in two- and three-dimensional polycrystals, J. Mech. Phys. Solids (to appear). [Google Scholar]
  8. F. John and L. Nirenberg, On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961) 415-426. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. John, Rotation and strain. Comm. Pure Appl. Math. 14 (1961) 391-413. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. John, Bounds for deformations in terms of average strains, in Inequalities III, O. Shisha Ed., Academic Press (1972) 129-143. [Google Scholar]
  11. F. John, Uniqueness of Non-Linear Elastic Equilibrium for Prescribed Boundary Displacements and Sufficiently Small Strains. Comm. Pure Appl. Math. 25 (1972) 617-635. [CrossRef] [MathSciNet] [Google Scholar]
  12. R.V. Kohn, The relaxation of a double-well energy. Continuum Mech. Thermodyn. 3 (1991) 193-236 [Google Scholar]
  13. R.V. Kohn and V. Lods, in preparation (1999). [Google Scholar]
  14. R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems II. Comm. Pure Appl. Math. 34 (1986) 139-182. [CrossRef] [MathSciNet] [Google Scholar]
  15. S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Rat. Mech. Anal. 99 (1987) 189-212. [Google Scholar]
  16. Y.C. Shu and K. Bhattacharya, The influence of texture on the shape-memory effect in polycrystals. Acta Mater. 46 (1998) 5457-5473. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you