Free Access
Issue
ESAIM: M2AN
Volume 34, Number 2, March/April 2000
Special issue for R. Teman's 60th birthday
Page(s) 275 - 301
DOI https://doi.org/10.1051/m2an:2000141
Published online 15 April 2002
  1. L. Abdelouhab, J.L. Bona, M. Felland and J.-C. Saut, Non-local models for nonlinear, dispersive waves. Physica D 40 (1989) 360-392. [CrossRef] [MathSciNet] [Google Scholar]
  2. C.J. Amick, J.L. Bona and M.E. Schonbek, Decay of solutions of some nonlinear wave equations. J. Differential Equations 81 (1989) 1-49. [CrossRef] [MathSciNet] [Google Scholar]
  3. T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear systems. Philos. Trans. Royal Soc. London Ser. A 272 (1972) 47-78. [CrossRef] [MathSciNet] [Google Scholar]
  4. P. Biler, Asymptotic behavior in time of some equations generalizing the Korteweg-de Vries equation. Bull. Polish Acad. Sci. 32 (1984) 275-282. [Google Scholar]
  5. J.L. Bona, On solitary waves and their role in the evolution of long waves. In Applications of Nonlinear Analysis in the Physical Sciences, H. Amann, N. Bazley and K. Kirchgässner Eds, Pitman, London (1983) 183-205. [Google Scholar]
  6. J.L. Bona and P.J. Bryant, A mathematical model for long waves generated by a wave-maker in nonlinear dispersive systems. Proc. Cambridge Philos. Soc. 73 (1973) 391-405. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.L. Bona, F. Demengel and K. Promislow, Fourier splitting and the dissipation of nonlinear waves. Proc. Royal Soc. Edinburgh 129A (1999) 477-502. [Google Scholar]
  8. J.L. Bona, V.A. Dougalis, O.A. Karakashian and W.R. McKinney, The effect of dissipation on solutions of the generalized KdV equation. J. Comp. Appl. Math. 74 (1996) 127-154. [CrossRef] [Google Scholar]
  9. J.L. Bona, V.A. Dougalis, O.A. Karakashian and W.R. McKinney, Conservative high-order numerical schemes for the generalized Korteweg-de Vries equation. Philos. Trans. Poyal Soc. Lond. Ser. A 351 (1995) 107-164. [CrossRef] [Google Scholar]
  10. J.L. Bona and L. Luo, Initial-boundary-value problems for model equations for the propagation of long waves. In Evolution Equations, G. Ferreyra, G.R. Goldstein, and F. Neubrander Eds, Marcel Dekker, Inc.: New York (1995) 65-94. [Google Scholar]
  11. J.L. Bona and L. Luo, A generalized Korteweg-de Vries equation in a quarter plane. Contemporary Math. 221 (1999) 59-125. [Google Scholar]
  12. J.L. Bona and L. Luo, Decay of solutions to nonlinear, dispersive, dissipative wave equations. Diff. & Integral Equ. 6 (1993) 961-980. [Google Scholar]
  13. J.L. Bona and L. Luo, More results on the decay of solutions to nonlinear, dispersive wave equations. Discrete & Cont. Dynamical Systems 1 (1995) 151-193. [CrossRef] [Google Scholar]
  14. J.L. Bona, W.G. Pritchard and L.R. Scott, An evaluation of a model equation for water waves. Philos. Trans. Royal Soc. Lond. Ser. A 302 (1981) 457-510. [CrossRef] [MathSciNet] [Google Scholar]
  15. J.L. Bona, K. Promislow and C.E. Wayne, On the asymptotic behavior of solutions to nonlinear, dispersive, dissipative wave equations. Math. & Computers in Simulation 37 (1994) 265-277. [CrossRef] [Google Scholar]
  16. J.L. Bona, K. Promislow and C.E. Wayne, Higher-order asymptotics of decaying solutions of some nonlinear, dispersive, dissipative wave equations. Nonlinearity 8 (1995) 1179-1206. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Royal Soc. Lond. Ser. A 278 (1975) 555-601. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.L. Bona and R. Winther, The KdV equation, posed in a quarter plane. SIAM J. Math. Anal. 14 (1983) 1056-1106. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.L. Bona and R. Winther, KdV equation in a quarter plane, continuous dependence results. Diff. & Integral Equ. 2 (1989) 228-250. [Google Scholar]
  20. J.L. Bona and F.B. Weissler, Similarity solutions of the generalized Korteweg-de Vries equation. Math. Proc. Cambridge Philos. Soc. 127 (1999) 323-351. [CrossRef] [MathSciNet] [Google Scholar]
  21. D. Dix, The dissipation of nonlinear dispersive waves. Comm. PDE 17 (1992) 1665-1693. [CrossRef] [Google Scholar]
  22. R.S. Johnson, A nonlinear equation incorporating damping and dispersion. J. Fluid Mech. 42 (1970) 49-60. [CrossRef] [MathSciNet] [Google Scholar]
  23. R.S. Johnson, Shallow water waves on a viscous fluid - The undular bore. Phys. Fluids 15 (1972) 1693-1699. [CrossRef] [Google Scholar]
  24. C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. XLVI (1993) 27-94. [Google Scholar]
  25. C.E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc. 9 (1996) 573-603. [CrossRef] [MathSciNet] [Google Scholar]
  26. R.M. Miura, C.S. Gardner and M.D. Kruskal, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9 (1968) 1204-1209. [CrossRef] [Google Scholar]
  27. P. Naumkin and I. Shishmarev, Nonlinear nonlocal equations in the theory of waves. Series Translations of Math. Mono. 133, American Math. Soc.: Providence (1994). [Google Scholar]
  28. L.A. Ostrovsky, Short-wave asymptotics for weak shock waves and solitons in mechanics. Internat. J. Non-linear Mech. 11 (1976) 401-416. [CrossRef] [MathSciNet] [Google Scholar]
  29. E. Ott and R.N. Sudan, Nonlinear theory of ion acoustic waves with Landau damping. Phys. Fluids 12 (1969) 2388-2394. [CrossRef] [MathSciNet] [Google Scholar]
  30. J.-C. Saut, Sur quelques géneralisations de l'équation de Korteweg-de Vries. J. Math. Pures Appl. 58 (1979) 21-61. [MathSciNet] [Google Scholar]
  31. J. Wu, The inviscid limit of the complex Ginzburg-Landau equation. J. Differential Equations 142 (1998) 413-433. [CrossRef] [MathSciNet] [Google Scholar]
  32. N.J. Zabusky and C.J. Galvin, Shallow-water waves, the KdV equation and solitons. J. Fluid Mech. 47 (1971) 811-824. [CrossRef] [Google Scholar]
  33. B.-Y. Zhang, Taylor series expansion for solutions of the KdV equation with respect to their initial values. J. Funct. Anal. 129 (1995) 293-324. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you