Free Access
Volume 34, Number 5, September/October 2000
Page(s) 1003 - 1022
Published online 15 April 2002
  1. H.W. Alt, Lineare Funktionalanalysis (in german). Springer-Verlag, Berlin (1985).
  2. K. Arrow, L. Hurwicz and H. Uzawa, Studies in Nonlinear Programming. Stanford University Press, Stanford, CA (1958).
  3. S. Bertoluzza, A posteriori error estimates for the wavelet Galerkin method. Appl. Math. Lett. 8 (1995) 1-6. [CrossRef] [MathSciNet]
  4. S. Bertoluzza and R. Masson, Espaces vitesses-pression d'ondelettes adaptives satisfaisant la condition Inf-Sup. C. R. Acad. Sci. Paris, Sér. Math. 323 (1996).
  5. D. Braess, Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge (1997).
  6. J.H. Bramble, J.E. Pasciak and A.T. Vassilev, Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34 (1997) 1072-1092. [CrossRef]
  7. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991).
  8. A. Cohen, Wavelet methods in Numerical Analysis, in: Handbook of Numerical Analysis, North Holland, Amsterdam (to appear).
  9. A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet schemes for elliptic operator equations - Convergence rates, RWTH Aachen, IGPM Preprint 165, 1998. Math. Comput. (to appear).
  10. S. Dahlke, W. Dahmen, R. Hochmuth and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math. 23 (1997) 21-48. [CrossRef] [MathSciNet]
  11. S. Dahlke, R. Hochmuth and K. Urban, Adaptive wavelet methods for saddle point problems, Preprint 1126, Istituto di Analisi Numerica del C. N. R. (1999).
  12. S. Dahlke, R. Hochmuth and K. Urban, Convergent Adaptive Wavelet Methods for the Stokes Problem, in: Multigrid Methods VI, E. Dick, K. Riemslagh, J. Vierendeels Eds., Springer-Verlag (2000).
  13. W. Dahmen, Stability of multiscale transformations. J. Fourier Anal. Appl. 2 (1996) 341-361. [MathSciNet]
  14. W. Dahmen, Wavelet and multiscale methods for operator equations. Acta Numerica 6 (1997) 55-228. [CrossRef]
  15. W. Dahmen, Wavelet methods for PDEs -- Some recent developments, RWTH Aachen, IGPM Preprint 183 (1999).
  16. W. Dahmen, A. Kunoth and K. Urban, A Wavelet-Galerkin method for the Stokes problem. Computing 56 (1996) 259-302. [CrossRef]
  17. H.C. Elman and G.H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31 (1994) 1645-1661. [CrossRef]
  18. M. Fortin, Old and new Finite Elements for incompressible flows. Int. J. Numer. Meth. Fluids 1 (1981) 347-364. [CrossRef] [MathSciNet]
  19. R. Hochmuth, Stable multiscale discretizations for saddle point problems and preconditioning. Numer. Funct. Anal. and Optimiz. 19 (1998) 789-806. [CrossRef]
  20. P.G. Lemarié-Rieusset, Analyses multi-résolutions non orthogonales, Commutation entre Projecteurs et Derivation et Ondelettes Vecteurs à divergence nulle. Rev. Mat. Iberoam. 8 (1992) 221-236.
  21. R. Masson, Wavelet discretizations of the Stokes problem in velocity-pressure variables, Preprint, Univ. P. et M. Curie, Paris (1998).
  22. K. Urban, On divergence-free wavelets. Adv. Comput. Math. 4 (1995) 51-82. [CrossRef]
  23. K. Urban, Wavelet bases in H(div) and H(curl), Preprint 1106, Istituto di Analisi Numerica del C. N. R., 1998. Math. Comput. (to appear).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you