Free Access
Issue
ESAIM: M2AN
Volume 34, Number 5, September/October 2000
Page(s) 1003 - 1022
DOI https://doi.org/10.1051/m2an:2000113
Published online 15 April 2002
  1. H.W. Alt, Lineare Funktionalanalysis (in german). Springer-Verlag, Berlin (1985). [Google Scholar]
  2. K. Arrow, L. Hurwicz and H. Uzawa, Studies in Nonlinear Programming. Stanford University Press, Stanford, CA (1958). [Google Scholar]
  3. S. Bertoluzza, A posteriori error estimates for the wavelet Galerkin method. Appl. Math. Lett. 8 (1995) 1-6. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Bertoluzza and R. Masson, Espaces vitesses-pression d'ondelettes adaptives satisfaisant la condition Inf-Sup. C. R. Acad. Sci. Paris, Sér. Math. 323 (1996). [Google Scholar]
  5. D. Braess, Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge (1997). [Google Scholar]
  6. J.H. Bramble, J.E. Pasciak and A.T. Vassilev, Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34 (1997) 1072-1092. [CrossRef] [Google Scholar]
  7. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). [Google Scholar]
  8. A. Cohen, Wavelet methods in Numerical Analysis, in: Handbook of Numerical Analysis, North Holland, Amsterdam (to appear). [Google Scholar]
  9. A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet schemes for elliptic operator equations - Convergence rates, RWTH Aachen, IGPM Preprint 165, 1998. Math. Comput. (to appear). [Google Scholar]
  10. S. Dahlke, W. Dahmen, R. Hochmuth and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math. 23 (1997) 21-48. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Dahlke, R. Hochmuth and K. Urban, Adaptive wavelet methods for saddle point problems, Preprint 1126, Istituto di Analisi Numerica del C. N. R. (1999). [Google Scholar]
  12. S. Dahlke, R. Hochmuth and K. Urban, Convergent Adaptive Wavelet Methods for the Stokes Problem, in: Multigrid Methods VI, E. Dick, K. Riemslagh, J. Vierendeels Eds., Springer-Verlag (2000). [Google Scholar]
  13. W. Dahmen, Stability of multiscale transformations. J. Fourier Anal. Appl. 2 (1996) 341-361. [MathSciNet] [Google Scholar]
  14. W. Dahmen, Wavelet and multiscale methods for operator equations. Acta Numerica 6 (1997) 55-228. [CrossRef] [Google Scholar]
  15. W. Dahmen, Wavelet methods for PDEs -- Some recent developments, RWTH Aachen, IGPM Preprint 183 (1999). [Google Scholar]
  16. W. Dahmen, A. Kunoth and K. Urban, A Wavelet-Galerkin method for the Stokes problem. Computing 56 (1996) 259-302. [CrossRef] [Google Scholar]
  17. H.C. Elman and G.H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31 (1994) 1645-1661. [CrossRef] [Google Scholar]
  18. M. Fortin, Old and new Finite Elements for incompressible flows. Int. J. Numer. Meth. Fluids 1 (1981) 347-364. [CrossRef] [MathSciNet] [Google Scholar]
  19. R. Hochmuth, Stable multiscale discretizations for saddle point problems and preconditioning. Numer. Funct. Anal. and Optimiz. 19 (1998) 789-806. [CrossRef] [Google Scholar]
  20. P.G. Lemarié-Rieusset, Analyses multi-résolutions non orthogonales, Commutation entre Projecteurs et Derivation et Ondelettes Vecteurs à divergence nulle. Rev. Mat. Iberoam. 8 (1992) 221-236. [Google Scholar]
  21. R. Masson, Wavelet discretizations of the Stokes problem in velocity-pressure variables, Preprint, Univ. P. et M. Curie, Paris (1998). [Google Scholar]
  22. K. Urban, On divergence-free wavelets. Adv. Comput. Math. 4 (1995) 51-82. [CrossRef] [Google Scholar]
  23. K. Urban, Wavelet bases in H(div) and H(curl), Preprint 1106, Istituto di Analisi Numerica del C. N. R., 1998. Math. Comput. (to appear). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you