Free Access
Issue
ESAIM: M2AN
Volume 35, Number 1, January/February 2001
Page(s) 91 - 106
DOI https://doi.org/10.1051/m2an:2001100
Published online 15 April 2002
  1. C. Bardos, A.-Y. Leroux and J.-C. Nédélec, First order quasilinear equations with boundary conditions. Partial Differential Equations 4 (1979) 1017-1034. [CrossRef] [MathSciNet] [Google Scholar]
  2. Y. Coudière, J.-P. Vila and P. Villedieu, Convergence of a finite-volume time-explicit scheme for symmetric linear hyperbolic systems on bounded domains. C. R. Acad. Sci. Paris, Sér. I Math. 331 (2000) 95-100. [Google Scholar]
  3. F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations 71 (1988) 93-122. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Gisclon, Étude des conditions aux limites pour un système strictement hyperbolique, via l'approximation parabolique. J. Math. Pures Appl. 75 (1996) 485-508. [MathSciNet] [Google Scholar]
  5. M. Gisclon and D. Serre, Étude des conditions aux limites pour un système strictement hyberbolique via l'approximation parabolique. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994) 377-382. [Google Scholar]
  6. M. Gisclon and D. Serre, Conditions aux limites pour un système strictement hyperbolique fournies par le schéma de Godunov. RAIRO-Modél. Math. Anal. Numér. 31 (1997) 359-380. [MathSciNet] [Google Scholar]
  7. J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal. 95 (1986) 325-344. [CrossRef] [MathSciNet] [Google Scholar]
  8. E. Grenier and O. Guès, Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Differential Equations 143 (1998) 110-146. [CrossRef] [MathSciNet] [Google Scholar]
  9. K.T. Joseph and P.G. LeFloch, Boundary layers in weak solutions of hyperbolic conservation laws. Arch. Ration. Mech. Anal. 147 (1999) 47-88. [CrossRef] [MathSciNet] [Google Scholar]
  10. T.T. Li and W.C. Yu, Boundary value problems for quasilinear hyperbolic systems. Math. series V. Duke Univ., Durham (1985). [Google Scholar]
  11. T.P. Liu, Nonlinear stability of shock waves for viscous conservation laws. Mem. Amer. Math. Soc. 56 (1985) 108 p. [Google Scholar]
  12. J.B. Rauch and F.J. Massey, III, Differentiability of solutions to hyperbolic initial boundary value problems. Trans. Amer. Math. Soc. 189 (1974) 303-318. [MathSciNet] [Google Scholar]
  13. D. Serre, Sur la stabilité des couches limites de viscosité, preprint. [Google Scholar]
  14. M. Shub, A. Fathi and R. Langevin, Global stability of dynamical systems. Springer-Verlag, New-York, Berlin, 1987. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you