Free Access
Issue
ESAIM: M2AN
Volume 35, Number 1, January/February 2001
Page(s) 165 - 189
DOI https://doi.org/10.1051/m2an:2001111
Published online 15 April 2002
  1. A. Arsenev, Global existence of a weak solution of Vlasov's system of equations. USSR Comp. Math. Math. Phys. 15 (1975) 131-143. [CrossRef] [Google Scholar]
  2. K. Asano and S. Ukai, On the Vlasov-Poisson limit of the Vlasov-Maxwell equation. Pattern and waves. Qualitative analysis of nonlinear differential equations. Stud. Math. Appl. 18 (1986) 369-383. [CrossRef] [Google Scholar]
  3. N. Ben.Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system,. Math. Meth. Appl. Sci. 17 (1994) 451-476. [CrossRef] [Google Scholar]
  4. M. Bezard, Boundary value problems for the Vlasov-Maxwell system, in Semin. Équ. Deriv. Partielles, Ec. Polytech., Cent. Math., Palaiseau Semi 1992-1993, Exp. No. 4 (1993) 17. [Google Scholar]
  5. B. Bodin, Modélisation et simulation numérique du régime de Child-Langmuir. Thèse de l'École Polytechnique, Palaiseau (1995). [Google Scholar]
  6. M. Bostan and F. Poupaud, Periodic solutions of the Vlasov-Poisson system with boundary conditions. C. R. Acad. Sci. Paris, Sér. I 325 (1997) 1333-1336. [Google Scholar]
  7. M. Bostan and F. Poupaud, Periodic solutions of the Vlasov-Poisson system with boundary conditions. Math. Mod. Meth. Appl. Sci. 10 (1998) 651-672. [Google Scholar]
  8. M. Bostan and F. Poupaud, Periodic solutions of the 1D Vlasov-Maxwell system with boundary conditions. Math. Meth. Appl. Sci. 23 (2000) 1195-1221. [CrossRef] [Google Scholar]
  9. M.O. Bristeau, R. Glowinski and J. Périaux, Controllability methods for the computation of time periodic solutions; application to scattering. J. Comp. Phys. 147 (1998) 265-292. [Google Scholar]
  10. J.P. Cioni, Résolution numérique des équations de Maxwell instationnaires par une méthode de volumes finis. Ph.D., Université de Nice Sophia-Antipolis (1995). [Google Scholar]
  11. J.P. Cioni, L. Fezoui and D. Issautier, High-order upwind schemes for solving time-domain Maxwell equation. La Recherche Aérospatiale No. 5 (1994) 319-328. [Google Scholar]
  12. P. Degond, Regularité de la solution des équations cinétiques en physiques de plasmas, in Semin. Équ. Dériv. Partielles 1985-1986, Exp. No. 18 (1986) 11. [Google Scholar]
  13. P. Degond, Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity. Math. Methods Appl. Sci. 8 (1986) 533-558. [CrossRef] [MathSciNet] [Google Scholar]
  14. P. Degond, Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions. Ann. Sci. Ec. Norm. Super. IV. Ser. 19 (1986) 519-542. [Google Scholar]
  15. R.J. Diperna and P.L. Lions, Global weak solutions of Vlasov-Maxwell system. Comm. Pure Appl. Math. XVII (1989) 729-757. [Google Scholar]
  16. C. Greengard and P.A. Raviart, A boundary value problem for the stationary Vlasov-Poisson system. Comm. Pure Appl. Math. XLIII (1990) 473-507. [Google Scholar]
  17. Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions. Comm. Math. Phys. 154 (1993) 245-263. [CrossRef] [MathSciNet] [Google Scholar]
  18. Y. Guo, Regularity for the Vlasov equation in a half space. Indiana Univ. Math. J. 43 (1994) 255-320. [CrossRef] [MathSciNet] [Google Scholar]
  19. P.L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105 (1991) 415-430. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  20. R. Löhner and J. Ambrosiano, A finite element solver for the Maxwell equations, in GAMNI-SMAI conference on numerical methods for the solution of Maxwell equations, Paris (1989). [Google Scholar]
  21. K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in 3 dimensions for general initial data. J. Diff. Eq. 95 (1992) 281-303. [NASA ADS] [CrossRef] [Google Scholar]
  22. F. Poupaud, Boundary value problems for the stationary Vlasov-Maxwell system. Forum Math. 4 (1992) 499-527. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you