Free Access
Issue
ESAIM: M2AN
Volume 35, Number 2, March/April 2001
Page(s) 331 - 354
DOI https://doi.org/10.1051/m2an:2001118
Published online 15 April 2002
  1. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potential in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21 (1998) 823-864. [CrossRef] [MathSciNet] [Google Scholar]
  2. M.L. Barton and Z.J. Cendes, New vector finite elements for three-dimensional magnetic field computation. J. Appl. Phys. 61 (1987) 3919-3921. [CrossRef] [Google Scholar]
  3. A. Bermudez and D.G. Pedreira, Mathematical analysis of a finite element method without spurious solutions for computation of dielectric waveguides. Numer. Math. 61 (1992) 39-57. [CrossRef] [MathSciNet] [Google Scholar]
  4. D. Boffi, Fortin operator and discrete compactness for edge elements. Numer. Math. 86 (2000). DOI 10.1007/s002110000182. [Google Scholar]
  5. D. Boffi, A note on the discrete compactness property and the de Rham complex. Technical Report AM188, Department of Mathematics, Penn State University, 1999. Appl. Math. Lett. 14 (2001) 33-38. [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Boffi, P. Fernandes, L. Gastaldi and I. Perugia, Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36 (1999) 1264-1290. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Bossavit, Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proceedings, part A 135 (1988) 493-500. [Google Scholar]
  8. A. Bossavit, A rationale for `edge-elements' in 3-D fields computations. IEEE Trans. Magnet. 24 (1988) 74-79. [CrossRef] [Google Scholar]
  9. A. Bossavit, Solving maxwell's equations in a closed cavity, and the question of `spurious modes'. IEEE Trans. Magnet. 26 (1990) 702-705. [CrossRef] [Google Scholar]
  10. S. Caorsi, P. Fernandes and M. Raffetto, Edge elements and the inclusion condition. IEEE Microwave Guided Wave Lett. 5 (1995) 222-223. [CrossRef] [Google Scholar]
  11. S. Caorsi, P. Fernandes and M. Raffetto, Towards a good characterization of spectrally correct finite element methods in electromagnetics. COMPEL 15 (1996) 21-35. [Google Scholar]
  12. S. Caorsi, P. Fernandes and M. Raffetto, Do covariant projection elements really satisfy the inclusion condition? IEEE Trans. Microwave Theory Tech. 45 (1997) 1643-1644. [Google Scholar]
  13. S. Caorsi, P. Fernandes and M. Raffetto, On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38 (2000) 580-607. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Caorsi, P. Fernandes and M. Raffetto, Characteristic conditions for spurious-free finite element approximations of electromagnetic eigenproblems, in Proceedings of ECCOMAS 2000, Barcelona, Spain (2000) 1-13. [Google Scholar]
  15. Z.J. Cendes and P.P. Silvester, Numerical solution of dielectric loaded waveguides: I-finite-element analysis. IEEE Trans. Microwave Theory Tech. 18 (1970) 1124-1131. [CrossRef] [Google Scholar]
  16. P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). [Google Scholar]
  17. C.W. Crowley, P.P. Silvester and H. Hurwitz Jr., Covariant projection elements for 3d vector field problems. IEEE Trans. Magnet. 24 (1988) 397-400. [CrossRef] [Google Scholar]
  18. J.B. Davies, F.A. Fernandez and G.Y. Philippou, Finite element analysis of all modes in cavities with circular symmetry. IEEE Trans. Microwave Theory Tech. 30 (1982) 1975-1980. [CrossRef] [Google Scholar]
  19. P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957-991. [CrossRef] [MathSciNet] [Google Scholar]
  20. V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin (1986). [Google Scholar]
  21. M. Hano, Vector finite element solution of anisotropic waveguides using novel triangular elements. Electron. Com. Japan, Part 2, 71 (1988) 71-80. [Google Scholar]
  22. M. Hara, T. Wada, T. Fukasawa and F. Kikuchi, A three dimensional analysis of rf electromagnetic fields by the finite element method. IEEE Trans. Magnet. 19 (1983) 2417-2420. [CrossRef] [Google Scholar]
  23. H.C. Hoyt, Numerical studies of the shapes of drift tubes and Linac cavities. IEEE Trans. Nucl. Sci. 12 (1965) 153-155. [CrossRef] [Google Scholar]
  24. H.C. Hoyt, D.D. Simmonds and W.F. Rich, Computer designed 805 MHz proton Linac cavities. The Review of Scientific Instruments 37 (1966) 755-762. [CrossRef] [Google Scholar]
  25. F. Kikuchi, On a discrete compactness property for the Nedelec finite elements. J. Fac. Sci., Univ. Tokyo 36 (1989) 479-490. [Google Scholar]
  26. F. Kikuchi, Theoretical analysis of Nedelec's edge elements, in Proceedings of Computational Engineering Conference, Tokyo, Japan, May 26-28 (1999). [Google Scholar]
  27. R. Miniowitz and J.P. Webb, Covariant-projection quadrilateral elements for the analysis of waveguides with sharp edges. IEEE Trans. Microwave Theory Tech. 39 (1991) 501-505. [CrossRef] [Google Scholar]
  28. P. Monk and L. Demkowicz, Discrete compactness and the approximation of Maxwell's equations in Formula . Math. Comput. 70 (2001) 507-523. [Google Scholar]
  29. J.C. Nedelec, Mixed finite elements in Formula . Numer. Math. 35 (1980) 315-341. [CrossRef] [MathSciNet] [Google Scholar]
  30. J.C. Nedelec, A new family of mixed finite elements in Formula . Numer. Math. 50 (1986) 57-81. [CrossRef] [MathSciNet] [Google Scholar]
  31. R. Parodi, A. Stella and P. Fernandes, Rf tests of a band overlap free daw accelerating structure, in Proceedings of the IEEE 1991 Particle Accelerator Conference, San Francisco, USA (1991) 3026-3028. [Google Scholar]
  32. J.S. Wang and N. Ida, Curvilinear and higher order `edge' finite elements in electromagnetic field computation. IEEE Trans. Magnet. 29 (1993) 1491-1494. [CrossRef] [Google Scholar]
  33. S.H. Wong and Z.J. Cendes, Combined finite element-modal solution of three-dimensional eddy current problems. IEEE Trans. Magnet. 24 (1988) 2685-2687. [CrossRef] [Google Scholar]
  34. J.P. Webb, Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements. IEEE Trans. Antennas Propagation 47 (1999) 1244-1253. [CrossRef] [Google Scholar]
  35. J.P. Webb and R. Miniowitz, Analysis of 3-D microwave resonators using covariant-projection elements. IEEE Trans. Microwave Theory Tech. 39 (1991) 1895-1899. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you