Free Access
Issue
ESAIM: M2AN
Volume 35, Number 3, May-June 2001
Page(s) 437 - 462
DOI https://doi.org/10.1051/m2an:2001120
Published online 15 April 2002
  1. L. Alvarez, F. Guichard, P.L. Lions and J-.M. Morel, Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123 (1993) 199-257. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Ambrosio, Geometric evolution problems, distance function and viscosity solutions, in Calculus of variations and partial differential equations. Topics on geometrical evolution problems and degree theory, G. Buttazzo et al. Eds., Based on a summer school, Pisa, Italy, September 1996. Springer, Berlin (2000) 5-93; 327-337 . [Google Scholar]
  3. G. Barles and C. Georgelin, A simple proof of convergence for an approximation scheme for computing motions by mean curvature. SIAM J. Numer. Anal. 32 (1995) 484-500. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Barles and P.M. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Analysis 4 (1991) 271-283. [Google Scholar]
  5. G. Barles, H.M. Soner and P.M. Souganidis, Front propagation and phase field theory. SIAM J. Control Optim. 31 (1993) 439-469. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Barles and P.M. Souganidis, A new approach to front propagation problems: theory and applications. Arch. Ration. Mech. Anal. 141 (1998) 237-296. [CrossRef] [Google Scholar]
  7. H. Blum, Biological shape and visual science. J. Theor. Biology 38 (1973) 205-287. [Google Scholar]
  8. J. Bence, B. Merriman and S. Osher, Diffusion motion generated by mean curvature. CAM Report 92-18. Dept of Mathematics. University of California Los Angeles (1992). [Google Scholar]
  9. P. Cardaliaguet, On front propagation problems with nonlocal terms. Adv. Differential Equation 5 (1999) 213-268. [Google Scholar]
  10. F. Cao, Partial differential equations and mathematical morphology. J. Math. Pures Appl. 77 (1998) 909-941. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Catte, F. Dibos and G. Koepfler, A morphological scheme for mean curvature motion. SIAM J. Numer. Anal. 32 (1995) 1895-1909. [CrossRef] [MathSciNet] [Google Scholar]
  12. Y. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential Geom. 33 (1991) 749-786. [MathSciNet] [Google Scholar]
  13. X. Chen, D. Hilhorst and E. Logak, Asymptotic behavior of solutions of an Allen-Cahn equation with a nonlocal term. Nonlinear Anal. T.M.A. 28 (1997) 1283-1298. [CrossRef] [Google Scholar]
  14. M. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solution of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1-67. [Google Scholar]
  15. M. Crandall and P.-L. Lions, Convergent difference schemes for nonlinear parabolic equations and mean curvature motion. Numer. Math. 75 (1996) 17-41. [CrossRef] [MathSciNet] [Google Scholar]
  16. J. Escher and G. Simonett, Moving surfaces and abstract parabolic evolution equations. Topics in nonlinear analysis, Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser, Basel (1999) 183-212. [Google Scholar]
  17. L.C. Evans and J. Spruck, Motion of level sets by mean curvature I. J. Differential Geom. 33 (1991) 635-681. [MathSciNet] [Google Scholar]
  18. Y. Giga, S. Goto, H. Ishii and M.-H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J. 40 (1990) 443-470. [CrossRef] [Google Scholar]
  19. F. Guichard and J.M. Morel, Partial differential equation and image iterative filtering. Tutorial of ICIP 95, Washington D.C., (1995). [Google Scholar]
  20. H. Ishii, A generalization of the Bence-Merriman and Osher algorithm for motion by mean curvature, in Proceedings of the international conference on curvature flows and related topics, Levico, Italy, June 27 - July 2nd 1994, A. Damlamian et al. Eds. GAKUTO Int. Ser., Math. Sci. Appl. 5, Gakkotosho, Tokyo (1995) 111-127 . [Google Scholar]
  21. H. Ishii, Gauss curvature flow and its approximation, in Proceedings of the international conference on free boundary problems: theory and applications, Chiba, Japan, November 7-13 1999, N. Kenmochi Ed. GAKUTO Int. Ser., Math. Sci. Appl. 14, Gakkotosho, Tokyo (2000) 198-206. [Google Scholar]
  22. S. Osher and J.A. Sethian, Front propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comp. Phys. 79 (1998) 12-49. [Google Scholar]
  23. D. Pasquignon, Computation of skeleton by PDE. IEEE-ICIP, Washington (1995). [Google Scholar]
  24. D. Pasquignon, Approximation of viscosity solution by morphological filters. ESAIM: COCV 4 (1999) 335-359. [CrossRef] [EDP Sciences] [Google Scholar]
  25. J.A. Sethian, Level set methods and fast marching methods. Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge Monographs Appl. Comput. Math. 3, Cambridge University Press, Cambridge (1996). [Google Scholar]
  26. H.M. Soner, Front propagation, in Boundaries, interfaces and transitions, (Banff, AB, 1995) CRM Proc. Lect. Notes 13, Amer. Math. Soc., Providence RI (1998) 185-206. [Google Scholar]
  27. L. Vincent, Files d'attentes et algorithmes morphologiques. Thèse mines de Paris (1992). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you