Free Access
Volume 35, Number 3, May-June 2001
Page(s) 595 - 605
Published online 15 April 2002
  1. G. Alessandrini and A. Diaz Valenzuela, Unique determination of multiple cracks by two measurements. SIAM J. Control Optim. 34 (1996) 913-921. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Brühl, Explicit characterization of inclusions in electrical impedance tomography. SIAM J. Math. Anal. 32 (2001) 1327-1341. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Brühl and M. Hanke, Numerical implementation of two noniterative methods for locating inclusions by impedance tomography. Inverse Problems 16 (2000) 1029-1042. [CrossRef] [MathSciNet] [Google Scholar]
  4. K. Bryan and M. Vogelius, A computational algorithm to determine crack locations from electrostatic boundary measurements. The case of multiple cracks. Internat. J. Engrg. Sci. 32 (1994) 579-603. [CrossRef] [MathSciNet] [Google Scholar]
  5. H. W. Engl, M. Hanke and A. Neubauer, Regularization of inverse problems. Kluwer, Dordrecht (1996). [Google Scholar]
  6. A. Friedman and M. Vogelius, Determining cracks by boundary measurements. Indiana Univ. Math. J. 38 (1989) 527-556. [CrossRef] [MathSciNet] [Google Scholar]
  7. H. Kim and J. K. Seo, Unique determination of a collection of a finite number of cracks from two boundary measurements. SIAM J. Math. Anal. 27 (1996) 1336-1340. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Problems 14 (1998) 1489-1512. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Kirsch and S. Ritter, A linear sampling method for inverse scattering from an open arc. Inverse Problems 16 (2000) 89-105. [CrossRef] [MathSciNet] [Google Scholar]
  10. R. Kreß, Linear integral equations. 2nd edn., Springer, New York (1999). [Google Scholar]
  11. C. Miranda, Partial differential equations of elliptic type. 2nd edn., Springer, Berlin (1970). [Google Scholar]
  12. L. Mönch, On the numerical solution of the direct scattering problem for an open sound-hard arc. J. Comput. Appl. Math. 71 (1996) 343-356. [CrossRef] [MathSciNet] [Google Scholar]
  13. N. Nishimura and S. Kobayashi, A boundary integral equation method for an inverse problem related to crack detection. Internat. J. Numer. Methods Engrg. 32 (1991) 1371-1387. [CrossRef] [Google Scholar]
  14. F. Santosa and M. Vogelius, A computational algorithm to determine cracks from electrostatic boundary measurements. Internat. J. Engrg. Sci. 29 (1991) 917-937. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you