Free Access
Issue
ESAIM: M2AN
Volume 35, Number 4, July-August 2001
Page(s) 691 - 711
DOI https://doi.org/10.1051/m2an:2001132
Published online 15 April 2002
  1. D. Andreucci and R. Gianni, Global existence and blow up in a parabolic problem with nonlocal dynamical boundary conditions. Adv. Differ. Equ. 1 (1996) 729-752. [Google Scholar]
  2. D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985) 7-32. [MathSciNet] [Google Scholar]
  3. J.H. Bramble and P. Lee, On variational formulations for the Stokes equations with nonstandard boundary conditions. RAIRO Modél. Math. Anal. Numér. 28 (1994) 903-919. [MathSciNet] [Google Scholar]
  4. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Math. Stud. 5, Notas de matemática 50, North-Holland Publishing Comp., Amsterdam, London; American Elsevier Publishing Comp. Inc., New York (1973). [Google Scholar]
  5. H. De Schepper and M. Slodicka, Recovery of the boundary data for a linear 2nd order elliptic problem with a nonlocal boundary condition. ANZIAM J. 42E (2000) C488-C505. ISSN 1442-4436 (formerly known as J. Austral. Math. Soc., Ser. B). [Google Scholar]
  6. L.C. Evans, Partial differential equations, Graduate Studies in Mathematics 19, American Mathematical Society (1998). [Google Scholar]
  7. A. Friedman, Variational principles and free-boundary problems. Wiley, New York (1982). [Google Scholar]
  8. H. Gerke, U. Hornung, Y. Kelanemer, M. Slodicka and S. Schumacher, Optimal Control of Soil Venting: Mathematical Modeling and Applications, ISNM 127, Birkhäuser, Basel (1999). [Google Scholar]
  9. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, Berlin, Heidelberg (1983). [Google Scholar]
  10. W. Jäger and J. Kacur, Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO Modél. Math. Anal. Numér. 29 (1995) 605-627. [MathSciNet] [Google Scholar]
  11. J. Kacur, Solution to strongly nonlinear parabolic problems by a linear approximation scheme. IMA J. Numer. Anal. 19 (1999) 119-145. [CrossRef] [MathSciNet] [Google Scholar]
  12. C.V. Pao, Nonlinear parabolic and elliptic equations. Plenum Press, New York (1992). [Google Scholar]
  13. R. Rannacher and S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Internat. J. Numer. Methods Fluids 22 (1996) 325-352. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Slodicka, A monotone linear approximation of a nonlinear elliptic problem with a non-standard boundary condition, in Algoritmy 2000, A. Handlovicová, M. Komorníková, K. Mikula and D. Sevcovic, Eds., Bratislava (2000) 47-57. [Google Scholar]
  15. M. Slodicka and H. De Schepper, On an inverse problem of pressure recovery arising from soil venting facilities. Appl. Math. Comput. (to appear). [Google Scholar]
  16. M. Slodicka and H. De Schepper, A nonlinear boundary value problem containing nonstandard boundary conditions. Appl. Math. Comput. (to appear). [Google Scholar]
  17. M. Slodicka and R. Van Keer, A nonlinear elliptic equation with a nonlocal boundary condition solved by linearization. Internat. J. Appl. Math. 6 (2001) 1-22. [Google Scholar]
  18. R. Van Keer, L. Dupré and J. Melkebeek, Computational methods for the evaluation of the electromagnetic losses in electrical machinery. Arch. Comput. Methods Engrg. 5 (1999) 385-443. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you