Free Access
Volume 35, Number 5, September-October 2001
Page(s) 879 - 897
Published online 15 April 2002
  1. F.P.T. Baaijens, Mixed finite element methods for viscoelastic flow analysis: a review. J. Non-Newtonian Fluid Mech. 79 (1998) 361-385. [CrossRef] [Google Scholar]
  2. I. Babuska, R. Duran, and R. Rodriguez, Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements. SIAM J. Numer. Anal. 29 (1992) 947-964. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. Baranger and H. El-Amri, Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-newtoniens. RAIRO Modél. Math. Anal. Numér. 25 (1991) 31-48. [MathSciNet] [Google Scholar]
  4. J. Baranger and D. Sandri, Finite element approximation of viscoelastic fluid flow. Numer. Math. 63 (1992) 13-27. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Behr, L. Franca, and T. Tezduyar, Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows. Comput. Methods Appl. Mech. Engrg. 104 (1993) 31-48. [CrossRef] [MathSciNet] [Google Scholar]
  6. J. Bonvin, M. Picasso and R. Stenberg, GLS and EVSS methods for a three-field Stokes problem arising from viscoelastic flows. Comput. Methods Appl. Mech. Engrg. 190 (2001) 3893-3914. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.C. Bonvin, Numerical simulation of viscoelastic fluids with mesoscopic models. Ph.D. thesis, Département de Mathématiques, École Polytechnique Fédérale de Lausanne (2000). [Google Scholar]
  8. J.C. Bonvin and M. Picasso, Variance reduction methods for CONNFFESSIT-like simulations. J. Non-Newtonian Fluid Mech. 84 (1999) 191-215. [CrossRef] [Google Scholar]
  9. G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems, in Handbook of Numerical Analysis. Vol. V: Techniques of Scientific Computing (Part 2), P.G. Ciarlet and J.L. Lions, Eds., Elsevier, Amsterdam (1997) 487-637. [Google Scholar]
  10. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). [Google Scholar]
  11. P. Clément, Approximation by finite elements using local regularization. RAIRO Anal. Numér. 8 (1975) 77-84. [Google Scholar]
  12. M. Fortin, R. Guénette, and R. Pierre, Numerical analysis of the modified EVSS method. Comput. Methods Appl. Mech. Engrg. 143 (1997) 79-95. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Fortin and R. Pierre, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows. Comput. Methods Appl. Mech. Engrg. 73 (1989) 341-350. [CrossRef] [MathSciNet] [Google Scholar]
  14. L. Franca, S. Frey, and T.J.R. Hughes, Stabilized finite element methods: Application to the advective-diffusive model. Comput. Methods Appl. Mech. Engrg. 95 (1992) 253-276. [CrossRef] [MathSciNet] [Google Scholar]
  15. L. Franca and R. Stenberg, Error analysis of some GLS methods for elasticity equations. SIAM J. Numer. Anal. 28 (1991) 1680-1697. [CrossRef] [MathSciNet] [Google Scholar]
  16. X. Gallez, P. Halin, G. Lielens, R. Keunings, and V. Legat, The adaptative Lagrangian particle method for macroscopic and micro-macro computations of time-dependent viscoelastic flows. Comput. Methods Appl. Mech. Engrg. 180 (199) 345-364. [Google Scholar]
  17. V. Girault and L.R. Scott, Analysis of a 2nd grade-two fluid model with a tangential boundary condition. J. Math. Pures Appl. 78 (1999) 981-1011. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Grisvard, Elliptic Problems in Non Smooth Domains. Pitman, Boston (1985). [Google Scholar]
  19. C. Guillopé and J.-C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15 (1990) 849-869. [CrossRef] [MathSciNet] [Google Scholar]
  20. M.A. Hulsen, A.P.G. van Heel, and B.H.A.A. van den Brule, Simulation of viscoelastic clows using Brownian configuration Fields. J. Non-Newtonian Fluid Mech. 70 (1997) 79-101. [CrossRef] [Google Scholar]
  21. K. Najib and D. Sandri, On a decoupled algorithm for solving a finite element problem for the approximation of viscoelastic fluid flow. Numer. Math. 72 (1995) 223-238. [CrossRef] [MathSciNet] [Google Scholar]
  22. L.M. Quinzani, R.C. Armstrong, and R.A. Brown, Birefringence and Laser-Doppler velocimetry studies of viscoelastic flow through a planar contraction. J. Non-Newtonian Fluid Mech. 52 (1994) 1-36. [CrossRef] [Google Scholar]
  23. M. Renardy, Existence of slow steady flows of viscoelastic fluids with differential constitutive equations. Z. Angew. Math. Mech. 65 (1985) 449-451. [CrossRef] [MathSciNet] [Google Scholar]
  24. V. Ruas, Finite element methods for the three-field stokes system. RAIRO Modél. Math. Anal. Numér. 30 (1996) 489-525. [MathSciNet] [Google Scholar]
  25. D. Sandri, Analysis of a three-fields approximation of the stokes problem. RAIRO Modél. Math. Anal. Numér. 27 (1993) 817-841. [MathSciNet] [Google Scholar]
  26. A. Sequeira and M. Baia, A finite element approximation for the steady solution of a second-grade fluid model. J. Comput. Appl. Math. 111 (1999) 281-295. [CrossRef] [MathSciNet] [Google Scholar]
  27. R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland Publishing Company, Amsterdam, New York, Oxford (1984). [Google Scholar]
  28. R. Verfürth, A posteriori error estimators for the Stokes equations. Numer. Math. 55 (1989) 309-325. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you