Free Access
Issue
ESAIM: M2AN
Volume 35, Number 6, November/December 2001
Page(s) 1007 - 1053
DOI https://doi.org/10.1051/m2an:2001147
Published online 15 April 2002
  1. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  2. M. Amara, C. Bernardi and V. Girault, Conforming and nonconforming discretizations of a two-dimensional grade-two fluid. In preparation. [Google Scholar]
  3. D.N. Arnold, L.R. Scott and M. Vogelius, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Ser. 15 (1988) 169-192. [Google Scholar]
  4. I. Babuska, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179-192. [CrossRef] [Google Scholar]
  5. M. Baia and A. Sequeira, A finite element approximation for the steady solution of a second-grade fluid model. J. Comput. Appl. Math. 111 (1999) 281-295. [CrossRef] [MathSciNet] [Google Scholar]
  6. C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893-1916. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. Boland and R. Nicolaides, Stabilility of finite elements under divergence constraints. SIAM J. Numer. Anal. 20 (1983) 722-731. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, in Texts in Applied Mathematics 15, Springer-Verlag, New York (1994). [Google Scholar]
  9. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Anal. Numér. (1974) 129-151. [Google Scholar]
  10. F. Brezzi and R.S. Falk, Stability of a higher order Hood-Taylor method. SIAM J. Numer. Anal. 28 (1991) 581-590. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). [Google Scholar]
  12. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). [Google Scholar]
  13. P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. (1975) 77-84. [Google Scholar]
  14. D. Cioranescu and E.H. Ouazar, Existence et unicité pour les fluides de second grade. C. R. Acad. Sci. Paris Sér. I Math. 298 (1984) 285-287. [Google Scholar]
  15. D. Cioranescu and E.H. Ouazar, Existence and uniqueness for fluids of second grade, in Nonlinear Partial Differential Equations, Collège de France Seminar 109, Pitman (1984) 178-197. [Google Scholar]
  16. J.E. Dunn and R.L. Fosdick, Thermodynamics, stability, and boundedness of fluids of complexity two and fluids of second grade. Arch. Rational Mech. Anal. 56 (1974) 191-252. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.E. Dunn and K.R. Rajagopal, Fluids of differential type: Critical review and thermodynamic analysis. Internat. J. Engrg. Sci. 33 5 (1995) 689-729. [Google Scholar]
  18. R. Durán, R.H. Nochetto and J. Wang, Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2-D. Math. Comp. 51 (1988) 1177-1192. [Google Scholar]
  19. V. Girault and P.A. Raviart, Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms, in Springer Series in Computational Mathematics 5, Springer-Verlag, Berlin (1986). [Google Scholar]
  20. V. Girault and L.R. Scott, Analysis of a two-dimensional grade-two fluid model with a tangential boundary condition. J. Math. Pures Appl. 78 (1999) 981-1011. [CrossRef] [MathSciNet] [Google Scholar]
  21. V. Girault and L.R. Scott, Hermite Interpolation of Non-Smooth Functions Preserving Boundary Conditions. Department of Mathematics, University of Chicago, Preprint (1999). [Google Scholar]
  22. V. Girault and L.R. Scott, An upwind discretization of a steady grade-two fluid model in two dimensions. To appear in Collège de France Seminar. [Google Scholar]
  23. P. Grisvard, Elliptic Problems in Nonsmooth Domains, in Pitman Monographs and Studies in Mathematics 24 Pitman, Boston (1985). [Google Scholar]
  24. D.D. Holm, J.E. Marsden and T.S. Ratiu, Euler-Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 349 (1998) 4173-4177. [CrossRef] [Google Scholar]
  25. D.D. Holm, J.E. Marsden and T.S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. in Math. 137 (1998) 1-81. [CrossRef] [MathSciNet] [Google Scholar]
  26. E. Hopf, Über die Aufangswertaufgabe für die hydrodynamischen Grundleichungen. Math. Nachr. 4 (1951) 213-231. [MathSciNet] [Google Scholar]
  27. T.J.R. Hugues, A simple finite element scheme for developping upwind finite elements. Internat. J. Numer. Methods Engrg. 12 (1978) 1359-1365. [CrossRef] [Google Scholar]
  28. C. Johnson, Numerical Solution of PDE by the Finite Element Method. Cambridge University Press, Cambridge (1987). [Google Scholar]
  29. C. Johnson, U. Nävert and J. Pitkäranta, Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 45 (1985) 285-312. [Google Scholar]
  30. J. Leray, Étude de diverses équations intégrales nonlinéaires et de quelques problèmes que pose l'hydrodynamique. J. Math. Pures Appl. 12 (1933) 1-82. [Google Scholar]
  31. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). [Google Scholar]
  32. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, I. Dunod, Paris (1968). [Google Scholar]
  33. J.W. Morgan and L.R. Scott, A nodal basis for C1 piecewise polynomials of degree n ≥ 5. Math. Comp. 29 (1975) 736-740. [Google Scholar]
  34. J. Necas, Les Méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). [Google Scholar]
  35. R.R. Ortega, Contribución al estudio teórico de algunas E.D.P. no lineales relacionadas con fluidos no Newtonianos. Thesis, University of Sevilla (1995). [Google Scholar]
  36. E.H. Ouazar, Sur les fluides de second grade. Thèse de 3ème Cycle, Université Paris VI (1981). [Google Scholar]
  37. J. Peetre, Espaces d'interpolation et théorème de Soboleff. Ann. Inst. Fourier (Grenoble) 16 (1966) 279-317. [MathSciNet] [Google Scholar]
  38. O. Pironneau, Finite Element Methods for Fluids. Wiley, Chichester (1989). [Google Scholar]
  39. L.R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél. Math. Anal. Numér. 19 (1985) 111-143. [MathSciNet] [Google Scholar]
  40. L.R. Scott and S. Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. [Google Scholar]
  41. R. Stenberg, Analysis of finite element methods for the Stokes problem: a unified approach. Math. Comp. 42 (1984) 9-23. [MathSciNet] [Google Scholar]
  42. L. Tartar, Topics in nonlinear analysis, in Publications Mathématiques d'Orsay, Université Paris-Sud, Orsay (1978). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you