Free Access
Issue |
ESAIM: M2AN
Volume 36, Number 1, January/February 2002
|
|
---|---|---|
Page(s) | 33 - 54 | |
DOI | https://doi.org/10.1051/m2an:2002002 | |
Published online | 15 April 2002 |
- G. Barles and P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second-order equations. Asymptotic Anal. 4 (1991) 271-283. [MathSciNet] [Google Scholar]
- M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997). [Google Scholar]
- F. Bonnans and H. Zidani, Consistency of generalized finite difference schemes for the stochastic HJB equation. Preprint. [Google Scholar]
- F. Camilli and M. Falcone, An approximation scheme for the optimal control of diffusion processes. RAIRO Modél. Math. Anal. Numér. 29 (1995) 97-122. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- I. Capuzzo-Dolcetta, On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming. Appl. Math. Optim. 10 (1983) 367-377. [CrossRef] [MathSciNet] [Google Scholar]
- M.G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second-order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1-67. [Google Scholar]
- M.G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations. Math. Comp. 43 (1984) 1-19. [Google Scholar]
- W.H. Fleming and H.M. Soner, Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, New York (1993). [Google Scholar]
- H. Ishii and P.-L Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differential Equations 83 (1990) 26-78. [CrossRef] [MathSciNet] [Google Scholar]
- E.R. Jakobsen and K.H. Karlsen, Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations. To appear in J. Differential Equations. [Google Scholar]
- N.V. Krylov, On the rate of convergence of finite-difference approximations for Bellman's equations. St. Petersbg Math. J. 9 (1997) 639-650. [Google Scholar]
- N.V. Krylov, On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients. Probab. Theory Relat. Fields 117 (2000) 1-16. [CrossRef] [MathSciNet] [Google Scholar]
- H.J. Kushner, Numerical Methods for Approximations in Stochastic Control Problems in Continuous Time. Springer-Verlag, New York (1992). [Google Scholar]
- P.-L. Lions, Existence results for first-order Hamilton-Jacobi equations. Ricerche Mat. 32 (1983) 3-23. [MathSciNet] [Google Scholar]
- P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. Part I: The dynamic programming principle and applications. Comm. Partial Differential Equations 8 (1983) 1101-1174. [Google Scholar]
- P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. Part II: Viscosity solutions and uniqueness. Comm. Partial Differential Equations 8 (1983) 1229-1276. [Google Scholar]
- P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, Part III, in Nonlinear Partial Differential Equations and Appl., Séminaire du Collège de France, Vol. V, Pitman, Ed., Boston, London (1985). [Google Scholar]
- P.-L. Lions and B. Mercier, Approximation numérique des équations de Hamilton-Jacobi-Bellman. RAIRO Anal. Numér. 14 (1980) 369-393. [MathSciNet] [Google Scholar]
- J.L. Menaldi, Some estimates for finite difference approximations. SIAM J. Control Optim. 27 (1989) 579-607. [CrossRef] [MathSciNet] [Google Scholar]
- P.E. Souganidis, Approximation schemes for viscosity solutions of Hamilton-Jacobi equations. J. Differential Equations 59 (1985) 1-43. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.