Free Access
Issue
ESAIM: M2AN
Volume 36, Number 2, March/April 2002
Page(s) 293 - 305
DOI https://doi.org/10.1051/m2an:2002013
Published online 15 May 2002
  1. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potential in three-dimensional nonsmooth domains. Math Methods Appl. Sci. 21 (1998) 823-864. [Google Scholar]
  2. A. Bermúdez, R. Durán, A. Muschietti, R. Rodríguez and J. Solomin, Finite element vibration analysis of fluid-solid systems without spurious modes. SIAM J. Numer. Anal. 32 (1995) 1280-1295. [CrossRef] [MathSciNet] [Google Scholar]
  3. D. Boffi, Fortin operator and discrete compactness for edge elements. Numer. Math. 87 (2000) 229-246. [CrossRef] [MathSciNet] [Google Scholar]
  4. D. Boffi, A note on the de Rham complex and a discrete compactness property. Appl. Math. Lett. 14 (2001) 33-38. [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Boffi, F. Brezzi and L. Gastaldi, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp. 69 (2000) 121-140. [Google Scholar]
  6. D. Boffi, P. Fernandes, L. Gastaldi and I. Perugia, Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36 (1998) 1264-1290. [CrossRef] [MathSciNet] [Google Scholar]
  7. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). [Google Scholar]
  8. F. Brezzi, J. Rappaz and P.A. Raviart, Finite dimensional approximation of nonlinear problems. Part i: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1-25. [CrossRef] [MathSciNet] [Google Scholar]
  9. S. Caorsi, P. Fernandes and M. Raffetto, On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38 (2000) 580-607. [CrossRef] [MathSciNet] [Google Scholar]
  10. L. Demkowicz, P. Monk, L. Vardapetyan and W. Rachowicz, de Rham diagram for hp finite element spaces. Comput. Math. Appl. 39 (2000) 29-38. [CrossRef] [MathSciNet] [Google Scholar]
  11. L. Demkowicz and L. Vardapetyan, Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152 (1998) 103-124. Symposium on Advances in Computational Mechanics, Vol. 5 (Austin, TX, 1997). [CrossRef] [MathSciNet] [Google Scholar]
  12. J. Descloux, N. Nassif and J. Rappaz, On spectral approximation. I. The problem of convergence. RAIRO Anal. Numér. 12 (1978) 97-112. [MathSciNet] [Google Scholar]
  13. P Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957-991. [Google Scholar]
  14. F. Kikuchi, Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. In Proceedings of the first world congress on computational mechanics (Austin, Tex., 1986), Vol. 64, pages 509-521, 1987. [Google Scholar]
  15. F. Kikuchi, On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci., Univ. Tokyo, Sect. I A 36 (1989) 479-490. [Google Scholar]
  16. P. Monk, A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63 (1992) 243-261. [CrossRef] [MathSciNet] [Google Scholar]
  17. P. Monk and L. Demkowicz, Discrete compactness and the approximation of Maxwell's equations in Formula . Math. Comp. 70 (2001) 507-523. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.-C. Nédélec, Mixed finite elements in Formula . Numer. Math. 35 (1980) 315-341. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.-C. Nédélec, A new family of mixed finite elements in Formula . Numer. Math. 50 (1986) 57-81. [CrossRef] [MathSciNet] [Google Scholar]
  20. J. Schöberl, Commuting quasi-interpolation operators for mixed finite elements. Preprint ISC-01-10-MATH, Texas A&M University, 2001. [Google Scholar]
  21. L. Vardapetyan and L. Demkowicz, hp-adaptive finite elements in electromagnetics. Comput. Methods Appl. Mech. Engrg. 169 (1999) 331-344. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you