Free Access
Volume 36, Number 4, July/August 2002
Page(s) 725 - 746
Published online 15 September 2002
  1. F. Abergel and R. Temam, On some Control Problems in Fluid Mechanics. Theoret. Comput. Fluid Dyn. 1 (1990) 303-325. [Google Scholar]
  2. E. Bänsch, An adaptive Finite-Element-Strategy for the three-dimensional time-dependent Navier-Stokes Equations. J. Comput. Math. 36 (1991) 3-28. [CrossRef] [Google Scholar]
  3. D. Bertsekas, Nonlinear Programming. Athena Scientific, Belmont, Massachusetts (1995). [Google Scholar]
  4. J.F. Bonnans et al., Optimisation Numérique. Math. Appl. 27, Springer-Verlag, Berlin (1997). [Google Scholar]
  5. O. Ghattas and J.J. Bark, Optimal control of two-and three-dimensional incompressible Navier-Stokes Flows. J. Comput. Physics 136 (1997) 231-244. [Google Scholar]
  6. P.E. Gill et al., Practical Optimization. Academic Press, San Diego, California (1981). [Google Scholar]
  7. R. Glowinski, Finite element methods for the numerical simulation of incompressible viscous flow. Introduction to the Control of the Navier-Stokes Equations. Lect. Appl. Math. 28 (1991). [Google Scholar]
  8. W.A. Gruver and E. Sachs, Algorithmic Methods in Optimal Control. Res. Notes Math. 47, Pitman, London (1980). [Google Scholar]
  9. M. Heinkenschloss, Formulation and analysis of a sequential quadratic programming method for the optimal Dirichlet boundary control of Navier-Stokes flow, in Optimal Control: Theory, Algorithms, and Applications, Kluwer Academic Publishers B.V. (1998) 178-203. [Google Scholar]
  10. M. Hintermüller, On a globalized augmented Lagrangian-SQP algorithm for nonlinear optimal control problems with box constraints, in Fast solution methods for discretized optimization problems, K.-H. Hoffmann, R.H.W. Hoppe and V. Schulz Eds., Internat. Ser. Numer. Math. 138 (2001) 139-153. [Google Scholar]
  11. M. Hinze, Optimal and instantaneous control of the instationary Navier-Stokes equations, Habilitationsschrift (1999). Fachbereich Mathematik, Technische Universität Berlin, download see [Google Scholar]
  12. M. Hinze and K. Kunisch, Second order methods for optimal control of time-dependent fluid flow. SIAM J. Optim. Control 40 (2001) 925-946. [Google Scholar]
  13. P. Hood and C. Taylor, A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. & Fluids 1 (1973) 73-100. [Google Scholar]
  14. C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations. SIAM (1995). [Google Scholar]
  15. F.S. Kupfer, An infinite-dimensional convergence theory for reduced SQP-methods in Hilbert space. SIAM J. Optim. 6 (1996). [Google Scholar]
  16. E. Polak, Optimization. Appl. Math. Sci. 124, Springer-Verlag, New York (1997). [Google Scholar]
  17. M.J.D. Powell, Variable metric methods for constrained optimization, in Mathematical Programming, The State of the Art, Eds. Bachem, Grötschel, Korte, Bonn (1982). [Google Scholar]
  18. W.C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations. CBMS-NSF Regional Conference Series in Applied Mathematics 70, SIAM, Philadelphia (1998). [Google Scholar]
  19. K. Schittkowski, On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function. Math. Operationsforschung u. Statist, Ser. Optim. 14 (1983) 197-216. [Google Scholar]
  20. R. Temam, Navier-Stokes Equations. North-Holland (1979). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you