Free Access
Issue
ESAIM: M2AN
Volume 36, Number 4, July/August 2002
Page(s) 657 - 691
DOI https://doi.org/10.1051/m2an:2002029
Published online 15 September 2002
  1. J.M. Ball, Initial-boundary value problems for an extensible beam. J. Math. Anal. Appl. 41 (1973) 69-90. [Google Scholar]
  2. Ph. Ciarlet, Mathematical elasticity, Vol. II. Theory of plates. Stud. Math. Appl. 27 (1997). [Google Scholar]
  3. A. Cimetière, G. Geymonat, H. Le Dret, A. Raoult and Z. Tutek, Asymptotic theory and analysis for displacements and stress distribution in nonlinear elastic straight slender rods. J. Elasticity 19 (1988) 111-161. [CrossRef] [MathSciNet] [Google Scholar]
  4. R.W. Dickey, Free vibrations and dynamic buckling of the extensible beam. J. Math. Anal. Appl. 29 (1970) 443-454. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Haraux and E. Zuazua, Decay estimates for some damped hyperbolic equations. Arch. Rational Mech. Anal. 100 (1998) 191-206. [CrossRef] [MathSciNet] [Google Scholar]
  6. V.A. Kondratiev and O.A. Oleinik, Hardy's and Korn's type inequalities and their applications. Rendiconti di Matematica VII (1990) 641-666. [Google Scholar]
  7. V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. (9) 69 (1990) 33-55. [MathSciNet] [Google Scholar]
  8. J.E. Lagnese, Boundary stabilization of thin plates. SIAM Stud. Appl. Math., Philadelphia (1989). [Google Scholar]
  9. J.E. Lagnese, Recent progress in exact boundary controllability and uniform stability of thin beams and plates. Lect. Notes in Pure and Appl. Math. 128, Dekker, New York (1991) 61-111. [Google Scholar]
  10. I. Lasiecka, Weak, classical and intermediate solutions to full von Kármán system of dynamic nonlinear elasticity. Appl. Anal. 68 (1998) 121-145. [MathSciNet] [Google Scholar]
  11. J.E. Lagnese and G. Leugering, Uniform stabilization of a nonlinear beam by nonlinear boundary feedback. J. Differential Equations 91 (1991) 355-388. [CrossRef] [MathSciNet] [Google Scholar]
  12. J.L. Lions, Perturbations singulières dans les problèmes aux limites et contrôle optimal. Springer-Verlag, Berlin, in Lectures Notes in Math. 323 (1973). [Google Scholar]
  13. A.H. Nayfeh and D.T. Mook, Nonlinear oscillations. Wiley-Interscience, New York (1989). [Google Scholar]
  14. A.F. Pazoto and G.P. Menzala, Uniform stabilization of a nonlinear beam model with thermal effects and nonlinear boundary dissipation. Funkcial. Ekvac. 43 (2000) 339-360. [MathSciNet] [Google Scholar]
  15. J.P. Puel and M. Tucsnak, Boundary stabilization for the von Karman equations. SIAM J. Control Optim. 33 (1995) 255-273 [Google Scholar]
  16. J.P. Puel and M. Tucsnak, Global existence of the full von Kármán system. Appl. Math. Optim. 34 (1996) 139-160. [CrossRef] [MathSciNet] [Google Scholar]
  17. G.P. Menzala and E. Zuazua, The beam equation as a limit of 1-D nonlinear von Kármán model. Appl. Math. Lett. 12 (1999) 47-52. [CrossRef] [MathSciNet] [Google Scholar]
  18. G.P. Menzala and E. Zuazua, Timoshenko's beam equation as limit of a nonlinear one-dimensional von Kármán system. Proc. Roy. Soc. Edinburg Sect. A 130 (2000) 855-875. [CrossRef] [Google Scholar]
  19. G.P. Menzala and E. Zuazua, Timoshenko's plate equation as a singular limit of the dynamical von Kármán system. J. Math. Pures Appl. (9) 79 (2000) 73-94. [CrossRef] [MathSciNet] [Google Scholar]
  20. V.I. Sedenko, On the uniqueness theorem for generalized solutions of initial-boundary problems for the Marguerre-Vlasov vibrations of shallow shells with clamped boundary conditions. Appl. Math. Optim. 39 (1999) 309-326. [CrossRef] [MathSciNet] [Google Scholar]
  21. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. (4) CXLVI (1987) 65-96. [Google Scholar]
  22. L. Trabucho de Campos and J. Via no, Mathematical modelling of rods. Handbook of numerical analysis, Vol. IV, North Holland, Amsterdam (1996) 487-974. [Google Scholar]
  23. E. Zuazua, Stability and decay for a class of nonlinear hyperbolic problems. Asymptot. Anal. 1 (1988) 1-28. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you