Free Access
Volume 36, Number 5, September/October 2002
Special issue on Programming
Page(s) 783 - 792
Published online 15 October 2002
  1. M. Berz, C.H. Bischof, G.F. Corliss and A. Griewank, Computational Differentiation: Applications, Techniques, and Tools. SIAM, Philadelphia (1996). [Google Scholar]
  2. C. Bischof, A. Carle, P. Khademi, A. Mauer and P. Hovland, Adifor 2.0 User's Guide, Technical Report ANL/MCS-TM-192/CRPC-TR95516-S. Argonne National Laboratory Technical Memorandum and CRPC Technical Report (1998). [Google Scholar]
  3. G. Corliss, C. Faure, A. Griewank, L. Hascoet and U. Naumann, Automatic Differentiation: From Simulation to Optimization. Springer-Verlag (2001). [Google Scholar]
  4. C. Faure, Adjoining strategies for multi-layered programs. Optim. Methods Softw. 17 (2002) 129-164. [CrossRef] [MathSciNet] [Google Scholar]
  5. C. Faure and U. Naumann, Minimizing the Tape Size, in Automatic Differentiation: From Simulation to Optimization, G. Corliss, C. Faure, A. Griewank, L. Hascoët and U. Naumann Eds. Springer-Verlag (2001). [Google Scholar]
  6. C. Faure and Y. Papegay, Odyssée User's Guide, Version 1.7. Rapport technique 0224. INRIA (1998). [Google Scholar]
  7. R. Giering, Tangent linear and Adjoint Model Compiler, Users manual (1997). Unpublished, available from [Google Scholar]
  8. R. Giering and T. Kaminski, Generating recomputations in reverse mode, in Automatic Differentiation of Algorithms: From Simulation to Optimization. Springer-Verlag (2001). [Google Scholar]
  9. A. Griewank, Principles and Techniques of Algorithmic Differentiation. SIAM (2000). [Google Scholar]
  10. A. Griewank and G.F. Corliss, Automatic Differentiation of Algorithms: Theory, Implementation, and Applications. SIAM, Philadelphia (1991). [Google Scholar]
  11. Stanford Compiler Group, Suif Compiler System, Technical report. Stanford University. [Google Scholar]
  12. M. Iri, Simultaneous computation of functions, partial derivatives and estimates of rounding errors, complexity and practicality. Japan J. Appl. Math. 1 (1984) 223-252. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Iri and K. Kubota, Methods of fast automatic differentiation and applications, Research memorandum rmi 87-02, Department of Mathematical Engineering and Instrumentation Physics. Faculty of Engineering, University of Tokyo (1987). [Google Scholar]
  14. J. Joss, Algorithmisches Differenzieren. Ph.D. Thesis, ETH Zurich (1976). [Google Scholar]
  15. K.V. Kim, Yu.E. Nesterov and B.V. Cherkasskii, An estimate of the effort in computing the gradient. Soviet Math. Dokl. 29 (1984) 384-387. [Google Scholar]
  16. G.M. Ostrovskii, Yu.M. Volin and W.W. Borisov, Uber die berechnung von ableitungen. Wiss. Z. Tech. Hochsch. Chimie 13 (1971) 382-384. [Google Scholar]
  17. J.W. Sawyer, First partial differentiation by computer with an application to categorial data analysis. Amer. Statist. 38 (1984) 300-308. [CrossRef] [Google Scholar]
  18. B. Speelpening, Compiling fast partial derivatives of functions given by algorithms. Ph.D. Thesis, University of Illinois, Urbana-Champaign (1980). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you