Free Access
Issue |
ESAIM: M2AN
Volume 37, Number 1, January/February 2003
|
|
---|---|---|
Page(s) | 159 - 173 | |
DOI | https://doi.org/10.1051/m2an:2003014 | |
Published online | 15 March 2003 |
- G. Alessandrini, E. Rosset and J.K. Seo, Optimal size estimates for the inverse conductivity problem with one measurement. Proc. Amer. Math. Soc. 128 (2000) 53-64. [CrossRef] [MathSciNet] [Google Scholar]
- H. Ammari and H. Kang, High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter. Preprint (2002). [Google Scholar]
- H. Ammari and J.K. Seo, A new formula for the reconstruction of conductivity inhomogeneities. Preprint (2002). [Google Scholar]
- H. Ammari, S. Moskow and M.S. Vogelius, Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume. ESAIM Control Optim. Calc. Var. 9 (2003) 49-66. [Google Scholar]
- E. Beretta, A. Mukherjee and M.S. Vogelius, Asymptotic formulas for steady state voltage potentials in the presence of conductivity imperfections of small area. Z. Angew. Math. Phys. 52 (2001) 543-572. [CrossRef] [MathSciNet] [Google Scholar]
- E. Beretta, E. Francini and M.S. Vogelius, Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis. Preprint (2002). [Google Scholar]
- M. Brühl, M. Hanke and M.S. Vogelius, A direct impedance tomography algorithm for locating small inhomogeneities. Numer. Math. (to appear). [Google Scholar]
- Y. Capdeboscq and M.S. Vogelius, Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements. ESAIM: M2AN (to appear). [Google Scholar]
- D.J. Cedio-Fengya, S. Moskow and M.S. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Problems 14 (1998) 553-595. [Google Scholar]
- A. Friedman and M.S. Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch. Ration. Mech. Anal. 105 (1989) 299-326. [CrossRef] [MathSciNet] [Google Scholar]
- D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Grundlehren der mathematischen Wissenschaften, Vol. 224. Springer-Verlag, Berlin, Heidelberg, New York (1983). [Google Scholar]
- H. Kang, J.K. Seo and D. Sheen, The inverse conductivity problem with one measurement: stability and estimation of size. SIAM J. Math. Anal. 28 (1997) 1389-1405. [CrossRef] [MathSciNet] [Google Scholar]
- O. Kwon, J.K. Seo and J-R. Yoon, A real time algorithm for the location search of discontinuous conductivities with one measurement. Comm. Pure Appl. Math. 55 (2002) 1-29. [CrossRef] [MathSciNet] [Google Scholar]
- F. Murat and L. Tartar, H-Convergence, in Topics in the Mathematical Modelling of Composite Materials, A. Cherkaev and R.V. Kohn Eds., Progress in Nonlinear Differential Equations and Their Applications, Vol. 31, pp. 21-43. Birkhäuser, Boston, Basel, Berlin (1997). [Google Scholar]
- G.C. Papanicolaou, Diffusion in random media, Surveys in Applied Mathematics, Vol. 1, Chap. 3, J.B. Keller, D.W. Mclaughlin and G.C. Papanicolaou Eds., Plenum Press, New York (1995). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.