Free Access
Volume 37, Number 1, January/February 2003
Page(s) 187 - 207
Published online 15 March 2003
  1. AGARD, A selection of test cases for the evaluation of large-eddy simulations of turbulent flows. Advisory report no. 345 (1998). [Google Scholar]
  2. J.T. Beale, T. Kato and A. Majda, Remarks on the Breakdown of Smooth Solutions for the 3D Euler Equations. Springer-Verlag, Comm. Math. Phys. 94 (1984). [Google Scholar]
  3. H. Beir ao da Vega and L.C. Berselli, On the regularizing effect of the vorticity direction in incompressible viscous flows. Differential Integral Equations 15 (2002). [Google Scholar]
  4. V. Borue and S.A. Orszag, Local energy flux and subgrid-scale statistics in three dimensional turbulence. J. Fluid Mech. 366 (1998). [Google Scholar]
  5. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics. Springer-Verlag (1988). [Google Scholar]
  6. A. Chorin, Vorticity and Turbulence. Springer Verlag, Appl. Math. Sci. 103 (1994). [Google Scholar]
  7. R.A. Clark, J.H. Ferziger and W.C. Reynolds, Evaluation of subgrid scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91 (1979). [Google Scholar]
  8. G. Comte-Bellot and S. Corrsin, Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated isotropic turbulence. J. Fluid Mech. 48 (1971). [Google Scholar]
  9. P. Constantin, Geometric Statistic in turbulence. SIAM Rev. 36 (1994). [Google Scholar]
  10. P. Constantin, Navier-Stokes Equations and Fluid Turbulence. Preprint arXiv:math.AP/0003235 (2000). [Google Scholar]
  11. P. Constantin and Ch. Fefferman, Direction of Vorticity and the Problem of Global Regularity for The Navier-Stokes Equations. Indiana Univ. Math. J. 42 (1993). [Google Scholar]
  12. P. Constantin, Ch. Fefferman and A. Majda, Geometric Constraints on Potentially Singular Solutions for the 3-D Euler Equations. Comm. Partial Differential Equations 21 (1996). [Google Scholar]
  13. P. Constantin and C. Foias, Navier-Stokes Equations. Univ. of Chicago Press, Chicago, Chicago Lectures in Math. (1989). [Google Scholar]
  14. G.-H. Cottet, Anisotropic Subgrid-Scale Numerical Schemes for Large Eddy Simulation of Turbulent Flows. Unpublished report (1997). [Google Scholar]
  15. G.-H. Cottet, D. Jiroveanu and B. Michaux, Simulation des grandes échelles : aspects mathématiques et numériques. ESAIM Proc. 11 (2002) 85-95. [CrossRef] [EDP Sciences] [Google Scholar]
  16. G.-H. Cottet and O.V. Vasilyev, Comparison of Dynamic Smagorinsky and Anisotropic Subgrid-Scale Models, in Proceedings of the Summer Program, Center for Turbulence Research (1998). [Google Scholar]
  17. G.-H. Cottet and A.A. Wray, Anisotropic grid-based formulas for subgrid-scale models, in Annual Research Brief, Center for Turbulence Research, Stanford University and NASA Ames Research Center (1997). [Google Scholar]
  18. E. David, Modélisation des écoulements compressibles et hypersoniques : une approche instationnaire. Ph.D. thesis, INPG-LEGI Grenoble (1993). [Google Scholar]
  19. T. Dubois and F. Bouchon, Subgrid-scale models based on incremental unknowns for large eddy simulations, in Annual Research Brief, Center for Turbulence Research, Stanford University and NASA Ames Research Center (1998). [Google Scholar]
  20. F. Ducros, Simulation numérique directe et des grandes échelles de couches limites compressibles. Ph.D. thesis, INPG-LEGI Grenoble (1995). [Google Scholar]
  21. C. Foias, D. Holm and E. Titi, The three dimensional viscous Camassa-holm equations, and their relation to the Navier-Stokes equations and turbulence theory. J. Dynam. Differential Equations 14 (2002). [Google Scholar]
  22. G.P. Galdi and W.J. Layton, Approximating the larger eddies in fluid motion II: a model for space filtered flow. Math. Models Methods Appl. Sci. 10 (2000). [Google Scholar]
  23. M. Germano, U. Piomelli, P. Moin and W.H. Cabot, A Dynamic Subgrid-Scale Eddy Viscosity Model. Phys. Fluids A 3 (1991). [Google Scholar]
  24. T. Iliescu and P. Fischer, Large Eddy Simulation of Turbulent Channel Flows by the Rational LES Model. Preprint ANL/MCS-P932-0302 (2002). [Google Scholar]
  25. D. Jiroveanu, Analyse mathématique et numérique de certains modèles de viscosité turbulente. Ph.D. thesis, University Joseph Fourier Grenoble I (2002). [Google Scholar]
  26. A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30 (1941). [Google Scholar]
  27. O.A. Ladyszenskaya, The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breasch, New York (1969). [Google Scholar]
  28. O.A. Ladyszenskaya, On the Dynamical System Generated by the Navier-Stokes Equations. English translation in J. Sov. Math. 3 (1975). [Google Scholar]
  29. O.A. Ladyszenskaya, New equations for the description of the viscous incompressible fluids and solvability in the large of the boundary value problems for them, in Boundary Value Problems of Mathematical Physics V, Amer. Math. Soc., Providence, RI (1970). [Google Scholar]
  30. A. Leonard, Energy cascade in large-eddy simulations of turbulent flows. Adv. Geophysics 18 (1974). [Google Scholar]
  31. J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1934). [Google Scholar]
  32. M. Lesieur, Turbulence in Fluids. Kluwer Academic Publishers, Dordrecht (1997). [Google Scholar]
  33. M. Lesieur and O. Metais, New trends in large eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28 (1996) 45-82. [Google Scholar]
  34. J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non-linéaires. Dunod, Paris (1969). [Google Scholar]
  35. S. Liu, C. Meneveau and J. Katz, On the properties of similarity subgrid-scales models as deduced from measurements in a turbulent jet. J. Fluids Mech. 275 (1994) 83-119. [Google Scholar]
  36. J. Malek and J. Necas, A Finite-Dimensional Attractor for Three-Dimensional Flow of Incompressible Fluids. J. Differential Equations 127 (1996). [Google Scholar]
  37. J. Marsden and S. Skholler, Global Well-posedness for the Lagrangian Averaged Navier-Stokes (LANS) Equations on Bounded Domains. Meeting of Royal Society London (2000). [Google Scholar]
  38. J. Marsden, T. Ratiu and S. Skholler, The Geometry and Analysis of the Averaged Euler Equations and a New Diffeomorphism Group. Geom. Funct. Anal. 10 (2000). [Google Scholar]
  39. O. Metais and M. Lesieur, Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239 (1992) 157-194. [CrossRef] [MathSciNet] [Google Scholar]
  40. K. Mosheini, S. Skholler, B. Kosovic, J. Marsden, D. Caratti, A. Wray and R. Rogallo, Numerical Simulations of Homogeneous Turbulence Using the Lagrangian Averaged Navier-Stokes Equations in Proc. CTR summer school (2000). [Google Scholar]
  41. C. Parès, Uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids. Appl. Anal. 43 (1992). [Google Scholar]
  42. U. Piomelli, Y. Yu and R.J. Adrian, Subgrid scale energy transfer and near-wall turbulence structure. Phys. Fluids 8 (1996) 215-224. [CrossRef] [Google Scholar]
  43. R.S. Rogallo and P. Moin, Numerical Simulation of Turbulent Flows. Annu. Rev. Fluid Mech. 16 (1984) 99-137. [CrossRef] [Google Scholar]
  44. J. Smagorinsky, General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review 91 (1963). [Google Scholar]
  45. C.G. Speziale, Turbulence modeling for time-dependent RANS and VLES: A review. AIAA Journal 36 (1998). [Google Scholar]
  46. S. Stoltz and N.A. Adams, An Approximative Deconvolution Procedure for Large-Eddy Simulation. Phys. Fluids 11 (1999). [Google Scholar]
  47. R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, Appl. Math. Sci. 68 (1988). [Google Scholar]
  48. B. Vreman, Direct and large-eddy simulation of the compressible turbulent mixing layer. Ph.D. thesis, University of Twente (1995). [Google Scholar]
  49. D.C. Wilcox, Turbulence Modeling CFD. DCW Industries Inc. (1993). [Google Scholar]
  50. E. Zeidler, Nonlinear Functional Analysis and its Applications. Springer-Verlag (1990). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you