Free Access
Volume 37, Number 2, March/April 2003
Page(s) 227 - 240
Published online 15 November 2003
  1. G. Alessandrini, E. Rosset and J.K. Seo, Optimal size estimates for the inverse conductivity problem with one measurement. Proc. Amer. Math. Soc. 128 (2000) 53-64. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Alessandrini, A. Morassi and E. Rosset, Detecting cavities by electrostatic boundary measurements. Preprint (2002). [Google Scholar]
  3. H. Ammari and J.K. Seo, A new formula for the reconstruction of conductivity inhomogeneities. Preprint (2002). [Google Scholar]
  4. H. Ammari, S. Moskow and M.S. Vogelius, Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume. ESAIM: Cont. Opt. Calc. Var. 9 (2003) 49-66. [Google Scholar]
  5. E. Beretta, E. Francini and M.S. Vogelius, Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis. Preprint (2002). [Google Scholar]
  6. M. Brühl and M. Hanke, Numerical implementation of two noniterative methods for locating inclusions by impedance tomography. Inverse Problems 16 (2000) 1029-1042. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Brühl, M. Hanke and M.S. Vogelius, A direct impedance tomography algorithm for locating small inhomogeneities. Numer. Math. 93 (2003) 635-654. [CrossRef] [MathSciNet] [Google Scholar]
  8. Y. Capdeboscq and M.S. Vogelius, A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. ESAIM: M2AN 37 (2003) 159-173. [Google Scholar]
  9. D.J. Cedio-Fengya, S. Moskow and M.S. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Problems 14 (1998) 553-595. [Google Scholar]
  10. A. Friedman and V. Isakov, On the uniqueness in the inverse conductivity problem with one measurement. Indiana Univ. Math. J. 38 (1989) 553-580. [Google Scholar]
  11. S. He and V.G. Romanov, Identification of small flaws in conductors using magnetostatic measurements. Math. Comput. Simulation 50 (1999) 457-471. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Ikehata and T. Ohe, A numerical method for finding the convex hull of polygonal cavities using the enclosure method. Inverse Problems 18 (2002) 111-124. [CrossRef] [MathSciNet] [Google Scholar]
  13. H. Kang, J.K. Seo and D. Sheen, The inverse conductivity problem with one measurement: stability and estimation of size. SIAM J. Math. Anal. 28 (1997) 1389-1405. [CrossRef] [MathSciNet] [Google Scholar]
  14. R.V. Kohn and G.W. Milton, On bounding the effective conductivity of anisotropic composites, in Homogenization and Effective Moduli of Materials and Media, J.L. Ericksen, D. Kinderlehrer, R. Kohn and J.-L. Lions Eds., Springer-Verlag, IMA Vol. Math. Appl. 1 (1986) 97-125. [Google Scholar]
  15. O. Kwon, J.K. Seo and J.-R. Yoon, A real time algorithm for the location search of discontinuous conductivities with one measurement. Comm. Pure Appl. Math. 55 (2002) 1-29. [CrossRef] [MathSciNet] [Google Scholar]
  16. R. Lipton, Inequalities for electric and elastic polarization tensors with applications to random composites. J. Mech. Phys. Solids 41 (1993) 809-833. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you