Free Access
Issue
ESAIM: M2AN
Volume 37, Number 2, March/April 2003
Page(s) 319 - 338
DOI https://doi.org/10.1051/m2an:2003028
Published online 15 November 2003
  1. F. Arimburgo, C. Baiocchi and L.D. Marini, Numerical approximation of the 1-D nonlinear drift-diffusion model in semiconductors, in Nonlinear kinetic theory and mathematical aspects of hyperbolic systems, Rapallo, (1992) 1-10. World Sci. Publishing, River Edge, NJ (1992).
  2. H. Beir ao da Veiga, On the semiconductor drift diffusion equations. Differential Integral Equations 9 (1996) 729-744. [MathSciNet]
  3. H. Brezis, Analyse Fonctionnelle - Théorie et Applications. Masson, Paris (1983).
  4. F. Brezzi, L.D. Marini and P. Pietra, Méthodes d'éléments finis mixtes et schéma de Scharfetter-Gummel. C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 599-604.
  5. F. Brezzi, L.D. Marini and P. Pietra, Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J. Numer. Anal. 26 (1989) 1342-1355. [CrossRef] [MathSciNet]
  6. C. Chainais-Hillairet and Y.J. Peng, Convergence of a finite volume scheme for the drift-diffusion equations in 1-D. IMA J. Numer. Anal. 23 (2003) 81-108. [CrossRef] [MathSciNet]
  7. C. Chainais-Hillairet and Y.J. Peng, A finite volume scheme to the drift-diffusion equations for semiconductors, in Proc. of The Third International Symposium on Finite Volumes for Complex Applications, R. Herbin and D. Kröner Eds., Hermes, Porquerolles, France (2002) 163-170.
  8. C. Chainais-Hillairet and Y.J. Peng, Finite volume approximation for degenerate drift-diffusion system in several space dimensions. Math. Models Methods. Appl. Sci. (submitted).
  9. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
  10. R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods. North-Holland, Amsterdam, Handb. Numer. Anal. VII (2000) 713-1020.
  11. R. Eymard, T. Gallouët, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92 (2002) 41-82. [CrossRef] [MathSciNet]
  12. W. Fang and K. Ito, Global solutions of the time-dependent drift-diffusion semiconductor equations. J. Differential Equations 123 (1995) 523-566. [CrossRef] [MathSciNet]
  13. H. Gajewski, On the uniqueness of solutions to the drift-diffusion model of semiconductor devices. Math. Models Methods Appl. Sci. 4 (1994) 121-133. [CrossRef] [MathSciNet]
  14. A. Jüngel, Numerical approximation of a drift-diffusion model for semiconductors with nonlinear diffusion. ZAMM Z. Angew. Math. Mech. 75 (1995) 783-799. [CrossRef]
  15. A. Jüngel, A nonlinear drift-diffusion system with electric convection arising in semiconductor and electrophoretic modeling. Math. Nachr. 185 (1997) 85-110. [CrossRef] [MathSciNet]
  16. A. Jüngel and Y.J. Peng, A hierarchy of hydrodynamic models for plasmas: zero-relaxation-time limits. Comm. Partial Differential Equations 24 (1999) 1007-1033. [CrossRef] [MathSciNet]
  17. A. Jüngel and Y.J. Peng, Zero-relaxation-time limits in the hydrodynamic equations for plasmas revisited. Z. Angew. Math. Phys. 51 (2000) 385-396. [CrossRef] [MathSciNet]
  18. A. Jüngel and P. Pietra, A discretization scheme for a quasi-hydrodynamic semiconductor model. Math. Models Methods Appl. Sci. 7 (1997) 935-955. [CrossRef] [MathSciNet]
  19. P.A. Markowich, C.A. Ringhofer and C. Schmeiser, Semiconductor Equations. Springer-Verlag, Vienna (1990).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you