Free Access
Volume 37, Number 6, November-December 2003
Page(s) 937 - 972
Published online 15 November 2003
  1. H.W. Alt and E. DiBenedetto, Flow of oil and water through porous media. Astérisque 118 (1984) 89–108. Variational methods for equilibrium problems of fluids, Trento (1983). [Google Scholar]
  2. H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311–341. [CrossRef] [MathSciNet] [Google Scholar]
  3. S.N. Antontsev, A.V. Kazhikhov and V.N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids. North-Holland Publishing Co., Amsterdam (1990). Translated from the Russian. [Google Scholar]
  4. T. Arbogast, M.F. Wheeler and N.-Y. Zhang, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Numer. Anal. 33 (1996) 1669–1687. [CrossRef] [MathSciNet] [Google Scholar]
  5. K. Aziz and A. Settari, Petroleum reservoir simulation. Applied Science Publishers, London (1979). [Google Scholar]
  6. J. Bear, Dynamic of flow in porous media. Dover (1967). [Google Scholar]
  7. J. Bear, Modeling transport phenomena in porous media, in Environmental studies (Minneapolis, MN, 1992). Springer, New York (1996) 27–63. [Google Scholar]
  8. Y. Brenier and J. Jaffré, Upstream differencing for multiphase flow in reservoir simulation. SIAM J. Numer. Anal. 28 (1991) 685–696. [CrossRef] [MathSciNet] [Google Scholar]
  9. J. Carrillo, Entropy solutions for nonlinear degenerate problems. Arch. Rational. Mech. Anal. 147 (1999) 269–361. [Google Scholar]
  10. G. Chavent and J. Jaffré, Mathematical models and finite elements for reservoir simulation. Elsevier (1986). [Google Scholar]
  11. Z. Chen, Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution. J. Differential Equations 171 (2001) 203–232. [Google Scholar]
  12. Z. Chen, Degenerate two-phase incompressible flow. II. Regularity, stability and stabilization. J. Differential Equations 186 (2002) 345–376. [CrossRef] [MathSciNet] [Google Scholar]
  13. Z. Chen and R. Ewing, Mathematical analysis for reservoir models. SIAM J. Math. Anal. 30 (1999) 431–453. [CrossRef] [MathSciNet] [Google Scholar]
  14. Z. Chen and R.E. Ewing, Degenerate two-phase incompressible flow. III. Sharp error estimates. Numer. Math. 90 (2001) 215–240. [CrossRef] [MathSciNet] [Google Scholar]
  15. K. Deimling, Nonlinear functional analysis. Springer-Verlag, Berlin (1985). [Google Scholar]
  16. J. Droniou, A density result in sobolev spaces. J. Math. Pures Appl. 81 (2002) 697–714. [CrossRef] [MathSciNet] [Google Scholar]
  17. G. Enchéry, R. Eymard, R. Masson and S. Wolf, Mathematical and numerical study of an industrial scheme for two-phase flows in porous media under gravity. Comput. Methods Appl. Math. 2 (2002) 325–353. [MathSciNet] [Google Scholar]
  18. R.E. Ewing and R.F. Heinemann, Mixed finite element approximation of phase velocities in compositional reservoir simulation. R.E. Ewing Ed., Comput. Meth. Appl. Mech. Engrg. 47 (1984) 161–176. [CrossRef] [Google Scholar]
  19. R.E. Ewing and M.F. Wheeler, Galerkin methods for miscible displacement problems with point sources and sinks — unit mobility ratio case, in Mathematical methods in energy research (Laramie, WY, 1982/1983). SIAM, Philadelphia, PA (1984) 40–58. [Google Scholar]
  20. R. Eymard and T. Gallouët, Convergence d'un schéma de type éléments finis–volumes finis pour un système formé d'une équation elliptique et d'une équation hyperbolique. RAIRO Modél. Math. Anal. Numér. 27 (1993) 843–861. [MathSciNet] [Google Scholar]
  21. R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563–594. [CrossRef] [MathSciNet] [Google Scholar]
  22. R. Eymard, T. Gallouët, R. Herbin and A. Michel, Convergence. Numer. Math. 92 (2002) 41–82. [CrossRef] [MathSciNet] [Google Scholar]
  23. R. Eymard, T. Gallouët, D. Hilhorst and Y. Naït Slimane, Finite volumes and nonlinear diffusion equations. RAIRO Modél. Math. Anal. Numér. 32 (1998) 747–761. [Google Scholar]
  24. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of numerical analysis, Vol. VII. North-Holland, Amsterdam (2000) 713–1020. [Google Scholar]
  25. R. Eymard, T. Gallouët and R. Herbin, Error estimate for approximate solutions of a nonlinear convection-diffusion problem. Adv. Differential Equations 7 (2002) 419–440. [MathSciNet] [Google Scholar]
  26. P. Fabrie and T. Gallouët, Modeling wells in porous media flow. Math. Models Methods Appl. Sci. 10 (2000) 673–709. [CrossRef] [MathSciNet] [Google Scholar]
  27. X. Feng, On existence and uniqueness results for a coupled system modeling miscible displacement in porous media. J. Math. Anal. Appl. 194 (1995) 883–910. [CrossRef] [MathSciNet] [Google Scholar]
  28. P.A. Forsyth, A control volume finite element method for local mesh refinements, in SPE Symposium on Reservoir Simulation. number SPE 18415, Texas: Society of Petroleum Engineers Richardson Ed., Houston, Texas (February 1989) 85–96. [Google Scholar]
  29. P.A. Forsyth, A control volume finite element approach to NAPL groundwater contamination. SIAM J. Sci. Statist. Comput. 12 (1991) 1029–1057. [CrossRef] [MathSciNet] [Google Scholar]
  30. Gérard Gagneux and Monique Madaune-Tort, Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière. Springer-Verlag, Berlin (1996). With a preface by Charles-Michel Marle. [Google Scholar]
  31. R. Helmig, Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer-Verlag Berlin Heidelberg (1997). P. Schuls (Translator). [Google Scholar]
  32. D. Kroener and S. Luckhaus, Flow of oil and water in a porous medium. J. Differential Equations 55 (1984) 276–288. [CrossRef] [MathSciNet] [Google Scholar]
  33. S.N. Kružkov and S.M. Sukorjanskiĭ, Boundary value problems for systems of equations of two-phase filtration type; formulation of problems, questions of solvability, justification of approximate methods. Mat. Sb. (N.S.) 104 (1977) 69–88, 175–176. [MathSciNet] [Google Scholar]
  34. A. Michel, A finite volume scheme for the simulation of two-phase incompressible flow in porous media. SIAM J. Numer. Anal. 41 (2003) 1301–1317. [Google Scholar]
  35. A. Michel, Convergence de schémas volumes finis pour des problèmes de convection diffusion non linéaires. Ph.D. thesis, Université de Provence, France (2001). [Google Scholar]
  36. D.W. Peaceman, Fundamentals of Numerical Reservoir Simulation. Elsevier Scientific Publishing Co (1977). [Google Scholar]
  37. A. Pfertzel, Sur quelques schémas numériques pour la résolution des écoulements multiphasiques en milieu poreux. Ph.D. thesis, Universités Paris 6, France (1987). [Google Scholar]
  38. M.H. Vignal, Convergence of a finite volume scheme for an elliptic-hyperbolic system. RAIRO Modél. Math. Anal. Numér. 30 (1996) 841–872. [Google Scholar]
  39. H. Wang, R.E. Ewing and T.F. Russell, Eulerian-Lagrangian localized adjoint methods for convection-diffusion equations and their convergence analysis. IMA J. Numer. Anal. 15 (1995) 405–459. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you