Free Access
Issue |
ESAIM: M2AN
Volume 38, Number 2, March-April 2004
|
|
---|---|---|
Page(s) | 211 - 234 | |
DOI | https://doi.org/10.1051/m2an:2004010 | |
Published online | 15 March 2004 |
- V.I. Agoshkov, D. Ambrosi, V. Pennati, A. Quarteroni and F. Saleri, Mathematical and numerical modelling of shallow water flow. Comput. Mech. 11 (1993) 280–299. [Google Scholar]
- V.I. Agoshkov, A. Quarteroni and F. Saleri, Recent developments in the numerical simulation of shallow water equations. Boundary conditions. Appl. Numer. Math. 15 (1994) 175–200. [Google Scholar]
- J.P. Benque, J.A. Cunge, J. Feuillet, A. Hauguel and F.M. Holly, New method for tidal current computation. J. Waterway, Port, Coastal and Ocean Division, ASCE 108 (1982) 396–417. [Google Scholar]
- J.P. Benque, A. Haugel and P.L. Viollet, Numerical methods in environmental fluid mechanics. M.B. Abbot and J.A. Cunge Eds., Eng. Appl. Comput. Hydraulics II (1982) 1–10. [Google Scholar]
- S. Ferrari, A new two-dimensional Shallow Water model: physical, mathematical and numerical aspects Ph.D. Thesis, a.a. 2002/2003, Dottorato M.A.C.R.O., Università degli Studi di Milano. [Google Scholar]
- S. Ferrari, Convergence analysis of a space-time approximation to a two-dimensional system of Shallow Water equations. Internat. J. Appl. Analysis (to appear). [Google Scholar]
- J.F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 89–102. [CrossRef] [MathSciNet] [Google Scholar]
- R.H. Goodman, A.J. Majda and D.W. Mclaughlin, Modulations in the leading edges of midlatitude storm tracks. SIAM J. Appl. Math. 62 (2002) 746–776. [Google Scholar]
- E. Grenier, Boundary layers for parabolic regularizations of totally characteristic quasilinear parabolic equations. J. Math. Pures Appl. 76 (1997) 965–990. [Google Scholar]
- E. Grenier and O. Guès, Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Differential Equations 143 (1998) 110–146. [CrossRef] [MathSciNet] [Google Scholar]
- O. Guès, Perturbations visqueuses de problèmes mixtes hyperboliques et couches limites. Grenoble Ann. Inst. Fourier 45 (1995) 973–1006. [Google Scholar]
- M.E. Gurtin, An introduction to continuum mechanics. Academic Press, New York (1981). [Google Scholar]
- F. Hecht and O. Pironneau, FreeFem++:Manual version 1.23, 13-05-2002. FreeFem++ is a free software available at: http://www-rocq.inria.fr/Frederic.Hecht/freefem++.htm [Google Scholar]
- J.M. Hervouet and A. Watrin, Code TELEMAC (système ULYSSE) : Résolution et mise en œuvre des équations de Saint-Venant bidimensionnelles, Théorie et mise en œuvre informatique, Rapport EDF HE43/87.37 (1987). [Google Scholar]
- S. Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms. ESAIM: M2AN 35 (2001) 631–645. [CrossRef] [EDP Sciences] [Google Scholar]
- A. Kurganov and L. Doron, Central-upwind schemes for the Saint-Venant system. ESAIM: M2AN 36 (2002) 397–425. [CrossRef] [EDP Sciences] [Google Scholar]
- O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and quasilinear equations of parabolic type. Providence, Rhode Island. Amer. Math. Soc. (1968). [Google Scholar]
- D. Levermore and M. Sammartino, A shallow water model with eddy viscosity for basins with varying bottom topography. Nonlinearity 14 (2001) 1493–1515. [CrossRef] [MathSciNet] [Google Scholar]
- E. Miglio, A. Quarteroni and F. Saleri, Finite element approximation of a quasi–3D shallow water equation. Comput. Methods Appl. Mech. Engrg. 174 (1999) 355–369. [CrossRef] [MathSciNet] [Google Scholar]
- J. Rauch and F. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems. Trans. Amer. Math. Soc. 189 (1974) 303–318. [MathSciNet] [Google Scholar]
- M. Sammartino and R.E. Caflisch, Zero viscosity limit for analytic solutions of the Navier–Stokes equations on a half-space. I. Existence for Euler and Prandtl Equations; II. Construction of the Navier–Stokes solution. Comm. Math. Physics 192 (1998) 433–461 and 463–491. [CrossRef] [Google Scholar]
- D. Serre, Sytems of conservation laws. I and II, Cambridge University Press, Cambridge (1996). [Google Scholar]
- G.B. Whitham, Linear and nonlinear waves. John Wiley & Sons, New York (1974). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.