Free Access
Issue |
ESAIM: M2AN
Volume 38, Number 2, March-April 2004
|
|
---|---|---|
Page(s) | 371 - 394 | |
DOI | https://doi.org/10.1051/m2an:2004017 | |
Published online | 15 March 2004 |
- M. Abramowitz and I. Stegun, Handbook of Mathematical Functions. Dover, New York (1964). [Google Scholar]
- S. Amini and A. Profit, Analysis of the truncation errors in the fast multipole method for scattering problems. J. Comput. Appl. Math. 115 (2000) 23–33. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Carayol, Développement et analyse d'une méthode multipôle multiniveau pour l'électromagnétisme. Ph.D. Thesis, Université Paris VI Pierre et Marie Curie, Paris (2002). [Google Scholar]
- O. Cessenat and B. Després, Application of an ultra weak variational formulation of elliptic pdes to the 2D Helmholtz problem. SIAM J. Numer. Anal. 35 (1998) 255–299. [CrossRef] [MathSciNet] [Google Scholar]
- W.C. Chew, J.M. Jin, E. Michielssen and J.M. Song, Fast and Efficient Algorithms in Computational Electromagnetics. Artech House (2001). [Google Scholar]
- R. Coifman, V. Rokhlin and S. Greengard, The fast multipole method for the wave equation: A pedestrian prescription. IEEE Antennas and Propagation Magazine 35 (1993) 7–12. [CrossRef] [Google Scholar]
- D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag 93 (1992). [Google Scholar]
- R. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey and D.E. Knuth, On the Lambert W function. Adv. Comput. Math. 5 (1996) 329–359. [CrossRef] [MathSciNet] [Google Scholar]
- E. Darve, The fast multipole method. I. Error analysis and asymptotic complexity. SIAM J. Numer. Anal. 38 (2000) 98–128 (electronic). [Google Scholar]
- E. Darve, The fast multipole method: Numerical implementation. J. Comput. Phys. 160 (2000) 196–240. [Google Scholar]
- E. Darve and P. Havé, Efficient fast multipole method for low frequency scattering. J. Comput. Phys. (to appear). [Google Scholar]
- M.A. Epton and B. Dembart, Multipole translation theory for the three-dimensional Laplace and Helmholtz equations. SIAM J. Sci. Comput. 16 (1995) 865–897. [CrossRef] [MathSciNet] [Google Scholar]
- I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, 5th edn., Academic Press (1994). [Google Scholar]
- S. Koc, J. Song and W.C. Chew, Error analysis for the numerical evaluation of the diagonal forms of the scalar spherical addition theorem. SIAM J. Numer. Anal. 36 (1999) 906–921 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
- L. Lorch, Alternative proof of a sharpened form of Bernstein's inequality for Legendre polynomials. Applicable Anal. 14 (1982/83) 237–240. [Google Scholar]
- L. Lorch, Corrigendum: “Alternative proof of a sharpened form of Bernstein's inequality for Legendre polynomials” [Appl. Anal. 14 (1982/83) 237–240; MR 84k:26017]. Appl. Anal. 50 (1993) 47. [CrossRef] [MathSciNet] [Google Scholar]
- J.C. Nédélec, Acoustic and Electromagnetic Equation. Integral Representation for Harmonic Problems. Springer-Verlag 144 (2001). [Google Scholar]
- S. Ohnuki and W.C. Chew, Numerical accuracy of multipole expansion for 2-d mlfma. IEEE Trans. Antennas Propagat. 51 (2003) 1883–1890. [CrossRef] [Google Scholar]
- J. Rahola, Diagonal forms of the translation operators in the fast multipole algorithm for scattering problems. BIT 36 (1996) 333–358. [CrossRef] [MathSciNet] [Google Scholar]
- G.N. Watson, Bessel functions and Kapteyn series. Proc. London Math. Soc. (1916) 150–174. [Google Scholar]
- G.N. Watson, A treatise on the theory of Bessel functions. Cambridge University Press (1966). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.