Free Access
Issue |
ESAIM: M2AN
Volume 38, Number 6, November-December 2004
|
|
---|---|---|
Page(s) | 961 - 987 | |
DOI | https://doi.org/10.1051/m2an:2004046 | |
Published online | 15 December 2004 |
- G. Bal, On the self-averaging of wave energy in random media. SIAM Multiscale Model. Simul. 2 (2004) 398–420. [CrossRef] [Google Scholar]
- G. Bal and L. Ryzhik, Time reversal for classical waves in random media. C. R. Acad. Sci. Paris I 333 (2001) 1041–1046. [Google Scholar]
- G. Bal and L. Ryzhik, Time reversal and refocusing in random media. SIAM J. Appl. Math. 63 (2003) 1475–1498. [CrossRef] [MathSciNet] [Google Scholar]
- G. Bal, A. Fannjiang, G. Papanicolaou and L. Ryzhik, Radiative transport in a periodic structure. J. Statist. Phys. 95 (1999) 479–494. [CrossRef] [MathSciNet] [Google Scholar]
- G. Bal, G. Papanicolaou and L. Ryzhik, Radiative transport limit for the random Schrödinger equations. Nonlinearity 15 (2002) 513–529. [CrossRef] [MathSciNet] [Google Scholar]
- G. Bal, G. Papanicolaou and L. Ryzhik, Self-averaging in time reversal for the parabolic wave equation. Stochastics Dynamics 4 (2002) 507–531. [CrossRef] [Google Scholar]
- G. Bal, T. Komorowski and L. Ryzhik, Self-averaging of the Wigner transform in random media. Comm. Math. Phys. 242 (2003) 81–135. [MathSciNet] [Google Scholar]
- W. Bao, S. Jin and P.A. Markowich, On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comp. Phys. 175 (2002) 487–524. [Google Scholar]
- C. Bardos and M. Fink, Mathematical foundations of the time reversal mirror. Asymptot. Anal. 29 (2002) 157–182. [MathSciNet] [Google Scholar]
- P. Blomgren, G. Papanicolaou and H. Zhao, Super-resolution in time-reversal acoustics. J. Acoust. Soc. Am. 111 (2002) 230–248. [CrossRef] [PubMed] [Google Scholar]
- S. Chandrasekhar, Radiative Transfer. Dover Publications, New York (1960). [Google Scholar]
- J.F. Clouet and J.-P. Fouque, A time-reversal method for an acoustical pulse propagating in randomly layered media. Wave Motion 25 (1997) 361–368. [CrossRef] [MathSciNet] [Google Scholar]
- G.C. Cohen, Higher-order numerical methods for transient wave equations. Scientific Computation, Springer-Verlag, Berlin (2002). [Google Scholar]
- R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 6, Springer-Verlag, Berlin (1993). [Google Scholar]
- D.R. Durran, Nunerical Methods for Wave equations in Geophysical Fluid Dynamics. Springer, New York (1999). [Google Scholar]
- L. Erdös and H.T. Yau, Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation. Comm. Pure Appl. Math. 53 (2000) 667–735. [Google Scholar]
- M. Fink, Time reversed acoustics. Physics Today 50 (1997) 34–40. [CrossRef] [Google Scholar]
- M. Fink, Chaos and time-reversed acoustics. Physica Scripta 90 (2001) 268–277. [CrossRef] [Google Scholar]
- P. Gérard, P.A. Markowich, N.J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. 50 (1997) 323–380. [CrossRef] [MathSciNet] [Google Scholar]
- F. Golse, S. Jin and C.D. Levermore, The convergence of numerical transfer schemes in diffusive regimes. I. Discrete-ordinate method. SIAM J. Numer. Anal. 36 (1999) 1333–1369. [CrossRef] [MathSciNet] [Google Scholar]
- W. Hodgkiss, H. Song, W. Kuperman, T. Akal, C. Ferla and D. Jackson, A long-range and variable focus phase-conjugation experiment in a shallow water. J. Acoust. Soc. Am. 105 (1999) 1597–1604. [CrossRef] [Google Scholar]
- T.Y. Hou, X. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp. 227 (1999) 913–943. [Google Scholar]
- A. Ishimaru, Wave Propagation and Scattering in Random Media. New York, Academics (1978). [Google Scholar]
- J.B. Keller and R. Lewis, Asymptotic methods for partial differential equations: The reduced wave equation and Maxwell's equations, in Surveys in applied mathematics, J.B. Keller, D. McLaughlin and G. Papanicolaou Eds., Plenum Press, New York (1995). [Google Scholar]
- P.-L. Lions and T. Paul, Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9 (1993) 553–618. [CrossRef] [MathSciNet] [Google Scholar]
- P. Markowich, P. Pietra and C. Pohl, Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit. Numer. Math. 81 (1999) 595–630. [CrossRef] [MathSciNet] [Google Scholar]
- P. Markowich, P. Pietra, C. Pohl and H.P. Stimming, A Wigner-measure analysis of the Dufort-Frankel scheme for the Schrödinger equation. SIAM J. Numer. Anal. 40 (2002) 1281–1310. [CrossRef] [MathSciNet] [Google Scholar]
- G. Papanicolaou, L. Ryzhik and K. Solna, The parabolic approximation and time reversal. Matem. Contemp. 23 (2002) 139–159. [Google Scholar]
- G. Papanicolaou, L. Ryzhik and K. Solna, Statistical stability in time reversal. SIAM J. App. Math. 64 (2004) 1133–1155. [CrossRef] [Google Scholar]
- F. Poupaud and A. Vasseur, Classical and quantum transport in random media. J. Math. Pures Appl. 82 (2003) 711–748. [CrossRef] [MathSciNet] [Google Scholar]
- L. Ryzhik, G. Papanicolaou and J.B. Keller, Transport equations for elastic and other waves in random media. Wave Motion 24 (1996) 327–370. [CrossRef] [MathSciNet] [Google Scholar]
- H. Sato and M.C. Fehler, Seismic wave propagation and scattering in the heterogeneous earth. AIP series in modern acoustics and signal processing, AIP Press, Springer, New York (1998). [Google Scholar]
- P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. Academic Press, New York (1995). [Google Scholar]
- H. Spohn, Derivation of the transport equation for electrons moving through random impurities. J. Stat. Phys. 17 (1977) 385–412. [CrossRef] [Google Scholar]
- G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968) 507–517. [Google Scholar]
- F. Tappert, The parabolic approximation method, Lect. notes Phys., Vol. 70, Wave propagation and underwater acoustics. Springer-Verlag (1977). [Google Scholar]
- B.J. Uscinski, The elements of wave propagation in random media. McGraw-Hill, New York (1977). [Google Scholar]
- B.J. Uscinski, Analytical solution of the fourth-moment equation and interpretation as a set of phase screens. J. Opt. Soc. Am. 2 (1985) 2077–2091. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.