Free Access
Volume 39, Number 1, January-February 2005
Page(s) 183 - 221
Published online 15 March 2005
  1. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions. Dover, New-York (1964).
  2. S. Amini and A. Profit, Analysis of the truncation errors in the fast multipole method for scattering problems. J. Comput. Appl. Math. 115 (2000) 23–33. [CrossRef] [MathSciNet]
  3. J.A. Barcelo, A. Ruiz and L. Vega, Weighted estimates for the Helmholtz equation and some applications. J. Funct. Anal. 150 (1997) 356–382. [CrossRef] [MathSciNet]
  4. H. Bateman, Higher transcendental Functions. McGraw-Hill (1953).
  5. Q. Carayol, Développement et analyse d'une méthode multipôle multiniveau pour l'électromagnétisme. Ph.D. thesis, Université Paris VI Pierre et Marie Curie, rue Jussieu 75005 Paris (2002).
  6. Q. Carayol and F. Collino, Error estimates in the fast multipole method for scattering problems. part 1: Truncation of the jacobi-anger series. ESAIM: M2AN 38 (2004) 371–394. [CrossRef] [EDP Sciences]
  7. T.M. Cherry, Uniform asymptotic formulae for functions with transition points. Trans. AMS 68 (1950) 224–257.
  8. W.C. Chew, J.M. Jin, E. Michielssen and J.M. Song, Fast and Efficient Algorithms in Computational Electromagnetics. Artech House (2001).
  9. R. Coifman, V. Rokhlin and S. Greengard, The Fast Multipole Method for the wave equation: A pedestrian prescription. IEEE Antennas and Propagation Magazine 35 (1993) 7–12. [CrossRef]
  10. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag 93 (1992).
  11. E. Darve, The fast multipole method. I. Error analysis and asymptotic complexity. SIAM J. Numer. Anal. 38 (2000) 98–128 (electronic). [CrossRef] [MathSciNet]
  12. E. Darve, The fast multipole method: Numerical implementation. J. Comput. Physics 160 (2000) 196–240.
  13. E. Darve and P. Havé, Efficient fast multipole method for low frequency scattering. J. Comput. Physics 197 (2004) 341–363. [CrossRef]
  14. B. Dembart and E. Yip, Accuracy of fast multipole methods for maxwell's equations. IEEE Comput. Sci. Engrg. 5 (1998) 48–56. [CrossRef]
  15. M.A. Epton and B. Dembart, Multipole translation theory for the three-dimensional Laplace and Helmholtz equations. SIAM J. Sci. Comput. 16 (1995) 865–897. [CrossRef] [MathSciNet]
  16. I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products, 5th edition. Academic Press (1994).
  17. S. Koc, J. Song and W.C. Chew, Error analysis for the numerical evaluation of the diagonal forms of the scalar spherical addition theorem. SIAM J. Numer. Anal. 36 (1999) 906–921 (electronic). [CrossRef] [MathSciNet]
  18. L. Lorch, Alternative proof of a sharpened form of Bernstein's inequality for Legendre polynomials. Applicable Anal. 14 (1982/83) 237–240.
  19. L. Lorch, Corrigendum: “Alternative proof of a sharpened form of Bernstein's inequality for Legendre polynomials” [Appl. Anal. 14 (1982/83) 237–240; MR 84k:26017]. Appl. Anal. 50 (1993) 47. [CrossRef] [MathSciNet]
  20. J.C. Nédélec, Acoustic and Electromagnetic Equation. Integral Representation for Harmonic Problems. Springer-Verlag 144 (2001).
  21. J. Rahola, Diagonal forms of the translation operators in the fast multipole algorithm for scattering problems. BIT 36 (1996) 333–358. [CrossRef] [MathSciNet]
  22. G.N. Watson, A treatise on the theory of Bessel functions. Cambridge University Press (1966).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you