Free Access
Issue
ESAIM: M2AN
Volume 39, Number 2, March-April 2005
Page(s) 419 - 429
DOI https://doi.org/10.1051/m2an:2005013
Published online 15 April 2005
  1. S. Agmon, Lectures on elliptic boundary value problems. D. Van Nostrand, Princeton, N. J. (1965). [Google Scholar]
  2. I. Babuška, The finite element method with lagrange multipliers. Numer. Math. 20 (1973) 179–192. [Google Scholar]
  3. I. Babuška and A.K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations. Academic Press, New York (1972) 5–359. [Google Scholar]
  4. T. Belytschko, Y. Krongauz. D. Organ, M. Fleming and P. Krysl, Meshless methods: an overview and recent development. Comput. Methods Appl. Mech. Engrg. 139 (1996a) 3–47. [Google Scholar]
  5. J.M. Berezanskii, Expansions in Eigenfunctions of Self-Adjoint Operators, Translations of Mathematical Monographs 17, American Mathematical Society, Providence, R.I. (1968). [Google Scholar]
  6. S.C. Brener and L.R. Scott, The mathematical theory of finite elements methods. Springer-Verlag, New York (1994). [Google Scholar]
  7. C.A. Duarte and J.T. Oden, H-p clouds - an h-p meshless method. Num. Methods Partial Differential Equations. 1 (1996) 1–34. [Google Scholar]
  8. S. Li and W.K. Liu, Meshfree and particle methods and their applications. Applied Mechanics Reviews (ASME) (2001). [Google Scholar]
  9. J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod, Paris (1968). [Google Scholar]
  10. G.R. Liu, Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton, USA (2002). [Google Scholar]
  11. J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). [Google Scholar]
  12. J.T. Oden and J.N. Reddy, An introduction to the mathematical theory of finite elements. Wiley Interscience, New York (1976). [Google Scholar]
  13. K.T. Smith, Inequalities for formally positive integro-differential forms. Bull. Amer. Math. Soc. 67 (1961) 368–370. [Google Scholar]
  14. L.R. Volevič, Solvability of boundary value problems for general elliptic systems. Amer. Math. Soc. Transl. 67 (1968) 182–225. [Google Scholar]
  15. C. Zuppa, G. Simonetti and A. Azzam, The h-p Clouds meshless method and lagrange multipliers for higher order elliptic operators. In preparation. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you