Free Access
Issue
ESAIM: M2AN
Volume 39, Number 2, March-April 2005
Page(s) 253 - 273
DOI https://doi.org/10.1051/m2an:2005011
Published online 15 April 2005
  1. R. Abgrall, How to prevent pressure oscillations in multicomponent flow calculations. J. Comput. Phys. 125 (1996) 150–160. [CrossRef] [MathSciNet] [Google Scholar]
  2. F. Barre et al., The CATHARE code strategy and assessment. Nucl. Eng. Des. 124 (1990) 257–284. [CrossRef] [Google Scholar]
  3. K.H. Bendiksen, D. Malnes, R. Moe and S. Nuland, The dynamic two-fluid model OLGA: Theory and application, in SPE Prod. Eng. 6 (1991) 171–180. [Google Scholar]
  4. F. Coquel, K. El Amine, E. Godlewski, B. Perthame and P. Rascle, A numerical method using upwind schemes for the resolution of two-phase flows. J. Comput. Phys. 136 (1997) 272–288. [CrossRef] [MathSciNet] [Google Scholar]
  5. J. Cortes, A. Debussche and I. Toumi, A density perturbation method to study the eigenstructure of two-phase flow equation systems. J. Comput. Phys. 147 (1998) 463–484. [CrossRef] [MathSciNet] [Google Scholar]
  6. S. Evje and K.K. Fjelde, Hybrid flux-splitting schemes for a two-phase flow model. J. Comput. Phys. 175 (2002) 674–701. [CrossRef] [Google Scholar]
  7. S. Evje and K.K. Fjelde, On a rough ausm scheme for a one-dimensional two-phase flow model. Comput. Fluids 32 (2003) 1497–1530. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Evje and T. Flåtten, Hybrid flux-splitting schemes for a common two-fluid model. J. Comput. Phys. 192 (2003) 175–210. [CrossRef] [Google Scholar]
  9. S. Evje and T. Flåtten, Weakly implicit numerical schemes for a two-fluid model. SIAM J. Sci. Comput., accepted. [Google Scholar]
  10. T. Flåtten, Hybrid flux-splitting schemes for numerical resolution of two-phase flows. Dr.ing.-thesis, Norwegian University of Science and Technology (2003) 114. [Google Scholar]
  11. M. Larsen, E. Hustvedt, P. Hedne and T. Straume, PeTra: A novel computer code for simulation of slug flow, in SPE Annual Technical Conference and Exhibition, SPE 38841 (October 1997) 1–12. [Google Scholar]
  12. M.-S. Liou, A sequel to AUSM: AUSM(+). J. Comput. Phys. 129 (1996) 364–382. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  13. Y.Y. Niu, Simple conservative flux splitting for multi-component flow calculations. Num. Heat Trans. 38 (2000) 203–222. [CrossRef] [Google Scholar]
  14. Y.Y. Niu, Advection upwinding splitting method to solve a compressible two-fluid model. Internat. J. Numer. Methods Fluids 36 (2001) 351–371. [CrossRef] [Google Scholar]
  15. H. Paillère, C. Corre and J.R.G. Cascales, On the extension of the AUSM+ scheme to compressible two-fluid models. Comput. Fluids 32 (2003) 891–916. [CrossRef] [MathSciNet] [Google Scholar]
  16. V.H. Ransom, Numerical bencmark tests. Multiphase Sci. Tech. 3 (1987) 465-473. [Google Scholar]
  17. V.H. Ransom et al., RELAP5/MOD3 Code Manual, NUREG/CR-5535, Idaho National Engineering Laboratory (1995). [Google Scholar]
  18. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425–467. [CrossRef] [MathSciNet] [Google Scholar]
  19. E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comp. 168 (1984) 369–381. [CrossRef] [Google Scholar]
  20. I. Tiselj and S. Petelin, Modelling of two-phase flow with second-order accurate scheme. J. Comput. Phys. 136 (1997) 503–521. [CrossRef] [Google Scholar]
  21. I. Toumi, An upwind numerical method for two-fluid two-phase flow models. Nuc. Sci. Eng. 123 (1996) 147–168. [Google Scholar]
  22. I. Toumi and A. Kumbaro, An approximate linearized riemann solver for a two-fluid model. J. Comput. Phys. 124 (1996) 286–300. [CrossRef] [MathSciNet] [Google Scholar]
  23. J.A. Trapp and R.A. Riemke, A nearly-implicit hydrodynamic numerical scheme for two-phase flows. J. Comput. Phys. 66 (1986) 62–82. [CrossRef] [MathSciNet] [Google Scholar]
  24. Y. Wada and M.-S. Liou, An accurate and robust flux splitting scheme for shock and contact discontinuities. SIAM J. Sci. Comput. 18 (1997) 633–657. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you