Free Access
Issue
ESAIM: M2AN
Volume 39, Number 4, July-August 2005
Page(s) 827 - 854
DOI https://doi.org/10.1051/m2an:2005036
Published online 15 August 2005
  1. P. Alart and A. Curnier, A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl. Mech. Engrg. 92 (1991) 353–375. [Google Scholar]
  2. J. Alberty, C. Carstensen, S.A. Funken and R. Klose, Matlab implementation of the finite element method in elasticity. Computing 69 (2002) 239–263. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Bensoussan and J. Frehse, Regularity results for nonlinear elliptic systems and applications, Springer-Verlag, Berlin. Appl. Math. Sci. 151 (2002). [Google Scholar]
  4. M. Bergounioux, M. Haddou, M. Hintermüller and K. Kunisch, A comparison of a Moreau-Yosida-based active set strategy and interior point methods for constrained optimal control problems. SIAM J. Optim. 11 (2000) 495–521. [CrossRef] [MathSciNet] [Google Scholar]
  5. X. Chen, Z. Nashed and L. Qi, Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38 (2000) 1200–1216. [CrossRef] [MathSciNet] [Google Scholar]
  6. P.W. Christensen and J.S. Pang, Frictional contact algorithms based on semismooth Newton methods, in Reformulation: nonsmooth, piecewise smooth, semismooth and smoothing methods, Kluwer Acad. Publ., Dordrecht. Appl. Optim. 22 (1999) 81–116. [Google Scholar]
  7. P.W. Christensen, A. Klarbring, J.S. Pang and N. Strömberg, Formulation and comparison of algorithms for frictional contact problems. Internat. J. Numer. Methods Engrg. 42 (1998) 145–173. [Google Scholar]
  8. Z. Dostál, J. Haslinger and R. Kučera, Implementation of the fixed point method in contact problems with Coulomb friction based on a dual splitting type technique. J. Comput. Appl. Math. 140 (2002) 245–256. [CrossRef] [MathSciNet] [Google Scholar]
  9. C. Eck and J. Jarušek, Existence results for the static contact problem with Coulomb friction. Math. Models Methods Appl. Sci. 8 (1998) 445–468. [CrossRef] [MathSciNet] [Google Scholar]
  10. I. Ekeland and R. Témam, Convex analysis and variational problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. Classics in Applied Mathematics 28 (1999). [Google Scholar]
  11. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, second edition. Grundlehren der Mathematischen Wissenschaften 224 (1983). [Google Scholar]
  12. R. Glowinski, Numerical methods for nonlinear variational problems. Springer Series in Computational Physics. Springer-Verlag, New York (1984). [Google Scholar]
  13. P. Grisvard, Elliptic problems in nonsmooth domains, Pitman (Advanced Publishing Program), Boston, MA. Monographs Stud. Math. 24 (1985). [Google Scholar]
  14. W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, American Mathematical Society, Providence, RI. AMS/IP Studies in Advanced Mathematics 30 (2002). [Google Scholar]
  15. J. Haslinger, Approximation of the Signorini problem with friction, obeying the Coulomb law. Math. Methods Appl. Sci. 5 (1983) 422–437. [CrossRef] [MathSciNet] [Google Scholar]
  16. J. Haslinger, Z. Dostál and R. Kučera, On a splitting type algorithm for the numerical realization of contact problems with Coulomb friction. Comput. Methods Appl. Mech. Engrg. 191 (2002) 2261–2281. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Hintermüller and M. Ulbrich, A mesh-independence result for semismooth Newton methods. Math. Prog., Ser. B 101 (2004) 151–184. [Google Scholar]
  18. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2003) 865–888. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Hintermüller, V. Kovtunenko and K. Kunisch, Semismooth Newton methods for a class of unilaterally constrained variational inequalities. Adv. Math. Sci. Appl. 14 (2004) 513–535. [MathSciNet] [Google Scholar]
  20. I. Hlaváček, J. Haslinger, J. Nečas and J. Lovíšek, Solution of Variational Inequalities in Mechanics. Springer, New York. Appl. Math. Sci. 66 (1988). [Google Scholar]
  21. S. Hüeber and B. Wohlmuth, A primal-dual active strategy for non–linear multibody contact problems. Comput. Methods Appl. Mech. Engrg. 194 (2005) 3147–3166. [CrossRef] [MathSciNet] [Google Scholar]
  22. K. Ito and K. Kunisch, Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces. Nonlinear Anal. 41 (2000) 591–616. [CrossRef] [MathSciNet] [Google Scholar]
  23. K. Ito and K. Kunisch, Semi-smooth Newton methods for variational inequalities of the first kind. ESAIM: M2AN 37 (2003) 41–62. [CrossRef] [EDP Sciences] [Google Scholar]
  24. N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. SIAM Stud. Appl. Math. 8 (1988). [Google Scholar]
  25. A. Klarbring, Mathematical programming and augmented Lagrangian methods for frictional contact problems, A. Curnier, Ed. Proc. Contact Mechanics Int. Symp. (1992). [Google Scholar]
  26. R. Krause, Monotone Multigrid Methods for Signorini's Problem with Friction. Ph.D. Thesis, FU Berlin (2001). [Google Scholar]
  27. P. Laborde and Y. Renard, Fixed point strategies for elastostatic frictional contact problems. Rapport Interne 03-27, MIP Laboratory, Université Paul Sabatier, Toulouse (2003). [Google Scholar]
  28. A.Y.T. Leung, Guoqing Chen and Wanji Chen, Smoothing Newton method for solving two- and three-dimensional frictional contact problems. Internat. J. Numer. Methods Engrg. 41 (1998) 1001–1027. [CrossRef] [MathSciNet] [Google Scholar]
  29. C. Licht, E. Pratt and M. Raous, Remarks on a numerical method for unilateral contact including friction, in Unilateral problems in structural analysis, IV (Capri, 1989), Birkhäuser, Basel. Internat. Ser. Numer. Math. 101 (1991) 129–144. [Google Scholar]
  30. J. Nečas, J. Jarušek and J. Haslinger, On the solution of the variational inequality to the Signorini problem with small friction. Boll. Unione Math. Ital. 5 (1980) 796–811. [Google Scholar]
  31. C.A. Radoslovescu and M. Cocu, Internal approximation of quasi-variational inequalities. Numer. Math. 59 (1991) 385–398. [CrossRef] [MathSciNet] [Google Scholar]
  32. M. Raous, Quasistatic Signorini problem with Coulomb friction and coupling to adhesion, in New developments in contact problems, P. Wriggers and Panagiotopoulos, Eds., Springer Verlag. CISM Courses and Lectures 384 (1999) 101–178. [Google Scholar]
  33. G. Stadler, Infinite-Dimensional Semi-Smooth Newton and Augmented Lagrangian Methods for Friction and Contact Problems in Elasticity. Ph.D. Thesis, University of Graz (2004). [Google Scholar]
  34. G. Stadler, Semismooth Newton and augmented Lagrangian methods for a simplified friction problem. SIAM J. Optim. 15 (2004) 39–62. [CrossRef] [MathSciNet] [Google Scholar]
  35. M. Ulbrich, Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13 (2003) 805–842. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you