Free Access
Issue
ESAIM: M2AN
Volume 40, Number 1, January-February 2006
Page(s) 1 - 28
DOI https://doi.org/10.1051/m2an:2006003
Published online 23 February 2006
  1. D.N. Arnold, F. Brezzi and J. Douglas, PEERS: A new mixed finite element method for plane elasticity. Japan J. Appl. Math. 1 (1984) 347–367. [CrossRef] [MathSciNet] [Google Scholar]
  2. D.N. Arnold, F. Brezzi and M. Fortin, A stable finite element method for the Stokes equations. Calcolo 21 (1984) 337–344. [CrossRef] [MathSciNet] [Google Scholar]
  3. D.N. Arnold, J. Douglas and Ch.P. Gupta, A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45 (1984) 1–22. [CrossRef] [MathSciNet] [Google Scholar]
  4. D. Arnold and R. Falk, Well-posedness of the fundamental boundary value problems for constrained anisotropic elastic materials. Arch. Rational Mech. Analysis 98 (1987) 143–190. [Google Scholar]
  5. I. Babuška and G.N. Gatica, On the mixed finite element method with Lagrange multipliers. Numer. Methods Partial Differential Equations 19 (2003) 192–210. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Barrientos, G.N. Gatica and E.P. Stephan, A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a posteriori error estimate. Numer. Math. 91 (2002) 197–222. [CrossRef] [MathSciNet] [Google Scholar]
  7. T.P. Barrios, G.N. Gatica and F. Paiva, A wavelet-based stabilization of the mixed finite element method with Lagrange multipliers. Appl. Math. Lett. (in press). [Google Scholar]
  8. D. Braess, Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press (1997). [Google Scholar]
  9. F. Brezzi and J. Douglas, Stabilized mixed methods for the Stokes problem. Numer. Math. 53 (1988) 225–235. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). [Google Scholar]
  11. F. Brezzi and M. Fortin, A minimal stabilisation procedure for mixed finite element methods. Numer. Math. 89 (2001) 457–491. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Brezzi, J. Douglas and L.D. Marini, Variable degree mixed methods for second order elliptic problems. Mat. Apl. Comput. 4 (1985) 19–34. [MathSciNet] [Google Scholar]
  13. F. Brezzi, J. Douglas and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. [CrossRef] [MathSciNet] [Google Scholar]
  14. F. Brezzi, M. Fortin and L.D. Marini, Mixed finite element methods with continuous stresses. Math. Models Methods Appl. Sci. 3 (1993) 275–287. [CrossRef] [MathSciNet] [Google Scholar]
  15. D. Chapelle and R. Stenberg, Locking-free mixed stabilized finite element methods for bending-dominated shells, in Plates and shells (Quebec, QC, 1996), American Mathematical Society, Providence, RI, CRM Proceedings Lecture Notes 21 (1999) 81–94. [Google Scholar]
  16. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland (1978). [Google Scholar]
  17. J. Douglas and J. Wan, An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52 (1989) 495–508. [CrossRef] [Google Scholar]
  18. H.-Y. Duan and G.-P. Liang, Analysis of some stabilized low-order mixed finite element methods for Reissner-Mindlin plates. Comput. Methods Appl. Mech. Engrg. 191 (2001) 157–179. [MathSciNet] [Google Scholar]
  19. L.P. Franca, New Mixed Finite Element Methods. Ph.D. Thesis, Stanford University (1987). [Google Scholar]
  20. L.P. Franca and T.J.R. Hughes, Two classes of finite element methods. Comput. Methods Appl. Mech. Engrg. 69 (1988) 89–129. [Google Scholar]
  21. L.P. Franca and A. Russo, Unlocking with residual-free bubbles. Comput. Methods Appl. Mech. Engrg. 142 (1997) 361–364. [CrossRef] [MathSciNet] [Google Scholar]
  22. L.P. Franca and R. Stenberg, Error analysis of Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28 (1991) 1680–1697. [CrossRef] [MathSciNet] [Google Scholar]
  23. C.O. Horgan, Korn's inequalities and their applications in continuum mechanics. SIAM Rev. 37 (1995) 491–511. [CrossRef] [MathSciNet] [Google Scholar]
  24. C.O. Horgan and J.K. Knowles, Eigenvalue problems associated with Korn's inequalities. Arch. Rational Mech. Anal. 40 (1971) 384–402. [Google Scholar]
  25. C.O. Horgan and L.E. Payne, On inequalities of Korn, Friedrichs and Babuška-Aziz. Arch. Rational Mech. Analysis 82 (1983) 165–179. [Google Scholar]
  26. N. Kechkar and D. Silvester, Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comput. 58 (1992) 1–10. [CrossRef] [Google Scholar]
  27. G. Lube and A. Auge, Stabilized mixed finite element approximations of incompressible flow problems. Zeitschrift für Angewandte Mathematik und Mechanik 72 (1992) T483–T486. [Google Scholar]
  28. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000). [Google Scholar]
  29. A. Masud and T.J.R. Hughes, A stabilized mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4341–4370. [CrossRef] [MathSciNet] [Google Scholar]
  30. R. Nascimbene and P. Venini, A new locking-free equilibrium mixed element for plane elasticity with continuous displacement interpolation. Comput. Methods Appl. Mech. Engrg 191 (2002) 1843–1860. [CrossRef] [MathSciNet] [Google Scholar]
  31. S. Norburn and D. Silvester, Fourier analysis of stabilized Formula -Formula mixed finite element approximation. SIAM J. Numer. Anal. 39 (2001) 817–833. [CrossRef] [MathSciNet] [Google Scholar]
  32. R. Stenberg, A family of mixed finite elements for the elasticity problem. Numer. Math. 53 (1988) 513–538. [CrossRef] [MathSciNet] [Google Scholar]
  33. T. Zhou, Stabilized hybrid finite element methods based on the combination of saddle point principles of elasticity problems. Math. Comput. 72 (2003) 1655–1673. [CrossRef] [Google Scholar]
  34. T. Zhou and L. Zhou, Analysis of locally stabilized mixed finite element methods for the linear elasticity problem. Chinese J. Engrg Math. 12 (1995) 1–6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you