Free Access
Issue
ESAIM: M2AN
Volume 40, Number 4, July-August 2006
Page(s) 623 - 652
DOI https://doi.org/10.1051/m2an:2006027
Published online 15 November 2006
  1. Y. Achdou, C. Sabot and N. Tchou, A multiscale numerical method for Poisson problems in some ramified domains with a fractal boundary. SIAM Multiscale Model. Simul. (2006) (accepted for publication). [Google Scholar]
  2. Y. Achdou, C. Sabot and N. Tchou, Transparent boundary conditions for Helmholtz equation in some ramified domains with a fractal boundary. J. Comput. Phys. (2006) (in press). [Google Scholar]
  3. R.A. Adams, Sobolev spaces. Academic Press, New York-London (1975). Pure Appl. Math. 65. [Google Scholar]
  4. H. Brezis, Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. Théorie et applications. Masson, Paris, 1983. [Google Scholar]
  5. M. Felici, Physique du transport diffusif de l'oxygène dans le poumon humain. Ph.D. thesis, École Polytechnique (2003). [Google Scholar]
  6. M. Gibbons, A. Raj and R.S. Strichartz, The finite element method on the Sierpinski gasket. Constr. Approx. 17 (2001) 561–588. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Grisvard, Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics 24, Pitman (Advanced Publishing Program), Boston, MA (1985). [Google Scholar]
  8. J.E. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981) 713–747. [CrossRef] [MathSciNet] [Google Scholar]
  9. P.W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147 (1981) 71–88. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Jonsson and H. Wallin, Function spaces on subsets of Rn. Math. Rep. 2 (1984) xiv+221. [Google Scholar]
  11. J.B. Keller and D. Givoli, Exact nonreflecting boundary conditions. J. Comput. Phys. 82 (1989) 172–192. [CrossRef] [MathSciNet] [Google Scholar]
  12. M.R. Lancia, A transmission problem with a fractal interface. Z. Anal. Anwendungen 21 (2002) 113–133. [MathSciNet] [Google Scholar]
  13. M.R. Lancia, Second order transmission problems across a fractal surface. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27 (2003) 191–213. [MathSciNet] [Google Scholar]
  14. B.B. Mandelbrodt, The fractal geometry of nature. Freeman and Co (1982). [Google Scholar]
  15. B. Mauroy, M. Filoche, J.S. Andrade and B. Sapoval, Interplay between flow distribution and geometry in an airway tree. Phys. Rev. Lett. 90 (2003). [Google Scholar]
  16. B. Mauroy, M. Filoche, E.R. Weibel and B. Sapoval, The optimal bronchial tree is dangerous. Nature 427 (2004) 633–636. [CrossRef] [PubMed] [Google Scholar]
  17. V.G. Maz'ja, Sobolev spaces. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin (1985). Translated from the Russian by T.O. Shaposhnikova. [Google Scholar]
  18. U. Mosco, Energy functionals on certain fractal structures. J. Convex Anal. 9 (2002) 581–600. [MathSciNet] [Google Scholar]
  19. U. Mosco and M.A. Vivaldi, Variational problems with fractal layers. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27 (2003) 237–251. [MathSciNet] [Google Scholar]
  20. R. Oberlin, B. Street and R.S. Strichartz, Sampling on the Sierpinski gasket. Experiment. Math. 12 (2003) 403–418. [MathSciNet] [Google Scholar]
  21. J. Rauch, Partial differential equations. Graduate Texts in Mathematics 128, Springer-Verlag, New York (1991). [Google Scholar]
  22. C. Sabot, Spectral properties of self-similar lattices and iteration of rational maps. Mém. Soc. Math. Fr. (N.S.) 92 (2003) vi+104. [Google Scholar]
  23. C. Sabot, Electrical networks, symplectic reductions, and application to the renormalization map of self-similar lattices, in Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 72 (2004) 155–205. [Google Scholar]
  24. B. Sapoval and T. Gobron, Vibration of strongly irregular fractal resonators. Phys. Rev. E 47 (1993). [Google Scholar]
  25. B. Sapoval, T. Gobron and A. Margolina, Vibration of fractal drums. Phys. Rev. Lett. 67 (1991). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you