Free Access
Issue
ESAIM: M2AN
Volume 40, Number 6, November-December 2006
Page(s) 1053 - 1067
DOI https://doi.org/10.1051/m2an:2007002
Published online 15 February 2007
  1. R.E. Bank and D.J. Rose, Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777–787. [CrossRef] [MathSciNet] [Google Scholar]
  2. B. Bialecki, M. Ganesh and K. Mustapha, A Petrov-Galerkin method with quadrature for elliptic boundary value problems. IMA J. Numer. Anal. 24 (2004) 157–177. [CrossRef] [MathSciNet] [Google Scholar]
  3. Z. Cai, On the finite volume element method. Numer. Math. 58 (1991) 713–735. [CrossRef] [MathSciNet] [Google Scholar]
  4. Z. Cai, J. Mandel and S. McCormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392–402. [CrossRef] [MathSciNet] [Google Scholar]
  5. S.H. Chou and S. He, On the regularity and uniformness conditions on quadrilateral grids. Comput. Methods Appl. Mech. Engrg., 191 (2002) 5149–5158. [Google Scholar]
  6. S.H. Chou, D.Y. Kwak and K.Y. Kim, Mixed finite volume methods on nonstaggered quadrilateral grids for elliptic problems. Math. Comp. 72 (2002) 525–539. [Google Scholar]
  7. S.H. Chou, D.Y. Kwak and Q. Li, Lp error estimates and superconvergence for covolume or finite volume element methods. Num. Meth. P. D. E. 19 (2003) 463–486. [CrossRef] [Google Scholar]
  8. P.G. Ciarlett, The finite element methods for elliptic problems. North-Holland, Amsterdam, New York, Oxford (1980). [Google Scholar]
  9. R.E. Ewing, R. Lazarov and Y. Lin, Finite volume element approximations of nonlocal reactive flows in porous media. Num. Meth. P. D. E. 16 (2000) 285–311. [Google Scholar]
  10. R.E. Ewing, T. Lin and Y. Lin, On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39 (2001) 1865–1888. [CrossRef] [MathSciNet] [Google Scholar]
  11. W. Hackbusch, On first and second order box schemes. Computing 41 (1989) 277–296. [CrossRef] [MathSciNet] [Google Scholar]
  12. R.E. Lynch, J.R. Rice and D.H. Thomas, Direct solution of partitial difference equations by tensor product methods. Numer. Math. 6 (1964) 185–199. [CrossRef] [MathSciNet] [Google Scholar]
  13. Y. Li and R. Li, Generalized difference methods on arbitrary quadrilateral networks. J. Comput. Math. 17 (1999) 653–672. [MathSciNet] [Google Scholar]
  14. R. Li, Z. Chen and W. Wu, Generalized difference methods for differential equations, Numerical analysis of finite volume methods. Marcel Dekker, New York (2000). [Google Scholar]
  15. F. Liebau, The finite volume element method with quadratic basis functions. Computing 57 (1996) 281–299. [Google Scholar]
  16. I.D. Mishev, Finite volume element methods for non-definite problems. Numer. Math. 83 (1999) 161–175. [CrossRef] [MathSciNet] [Google Scholar]
  17. E. Süli, Convergence of finite volume schemes for Poisson's equation on nonuniform meshes. SIAM J. Numer. Anal. 28 (1991) 1419–1430. [CrossRef] [MathSciNet] [Google Scholar]
  18. E. Süli, The accuracy of cell vertex finite volume methods on quadrilateral meshes. Math. Comp. 59 (1992) 359–382. [Google Scholar]
  19. M. Tian and Z. Chen, Generalized difference methods for second order elliptic partial differential equations. Numer. Math. J. Chinese Universities 13 (1991) 99–113. [Google Scholar]
  20. Z.J. Wang, Spectral (finite) volume methods for conservation laws on unstructured grids: basic formulation. J. Comput. Phys. 178 (2002) 210–251. [CrossRef] [MathSciNet] [Google Scholar]
  21. Z.J. Wang, L. Zhang and Y. Liu, Spectral (finite) volume method for conservation laws on unstructured grids. IV: Extension to two-dimensional systems. J. Comput. Phys. 194 (2004) 716–741. [CrossRef] [MathSciNet] [Google Scholar]
  22. X. Xiang, Generalized difference methods for second order elliptic equations. Numer. Math. J. Chinese Universities 2 (1983) 114–126. [Google Scholar]
  23. M. Yang and Y. Yuan, A multistep finite volume element scheme along characteristics for nonlinear convection diffusion problems. Math. Numer. Sinica 24 (2004) 487–500. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you