Free Access
Volume 40, Number 6, November-December 2006
Page(s) 961 - 990
Published online 15 February 2007
  1. H. Added and S. Added, Equation of Langmuir turbulence and nonlinear Schrödinger equation: smoothness and approximation. J. Funct. Anal. 79 (1988) 183–210. [CrossRef] [MathSciNet] [Google Scholar]
  2. B. Bidégaray, On a nonlocal Zakharov equation. Nonlinear Anal. 25 (1995) 247–278. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Colin and T. Colin, On a quasilinear Zakharov System describing laser-plasma interactions. Diff. Int. Eqs. 17 (2004) 297–330. [Google Scholar]
  4. T. Colin and G. Metivier, Instabilities in Zakharov Equations for Laser Propagation in a Plasma, Phase Space Analysis of PDEs, A. Bove, F. Colombini, and D. Del Santo, Eds., Progress in Nonlinear Differential Equations and Their Applications, Birkhauser (2006). [Google Scholar]
  5. J.-L. Delcroix and A. Bers, Physique des plasmas 1, 2. Inter Editions-Editions du CNRS (1994). [Google Scholar]
  6. J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system. J. Funct. Anal. 151 (1997) 384–436. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Glangetas and F. Merle, Existence of self-similar blow-up solutions for Zakharov equation in dimension two. I. Comm. Math. Phys. 160 (1994) 173–215. [CrossRef] [MathSciNet] [Google Scholar]
  8. L. Glangetas and F. Merle, Concentration properties of blow up solutions and instability results for Zakharov equation in dimension two. II. Comm. Math. Phys. 160 (1994) 349–389. [CrossRef] [MathSciNet] [Google Scholar]
  9. R.T. Glassey, Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension. Math. Comp. 58 (1992) 83–102. [Google Scholar]
  10. C.E. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations. Invent. Math. 134 (1998) 489–545. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Linares, G. Ponce and J.C. Saut, On a degenerate Zakharov system. Bull. Braz. Math. Soc. New Series 36 (2005) 1–23. [CrossRef] [Google Scholar]
  12. T. Ozawa and Y. Tsutsumi, Existence and smoothing effect of solution for the Zakharov equations. Publ. Res. Inst. Math. Sci. 28 (1992) 329–361. [CrossRef] [MathSciNet] [Google Scholar]
  13. G.L. Payne, D.R. Nicholson and R.M. Downie, Numerical Solution of the Zakharov Equations. J. Compt. Phys. 50 (1983) 482–498. [CrossRef] [Google Scholar]
  14. G. Riazuelo. Étude théorique et numérique de l'influence du lissage optique sur la filamentation des faisceaux lasers dans les plasmas sous-critiques de fusion inertielle. Ph.D. thesis, University of Paris XI. [Google Scholar]
  15. D.A. Russel, D.F. Dubois and H.A. Rose. Nonlinear saturation of simulated Raman scattering in laser hot spots. Phys. Plasmas 6 (1999) 1294–1317. [CrossRef] [Google Scholar]
  16. K.Y. Sanbomatsu, Competition between Langmuir wave-wave and wave-particule interactions. Ph.D. thesis, University of Colorado, Department of Astrophysical (1997). [Google Scholar]
  17. S. Schochet and M. Weinstein, The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence. Comm. Math. Phys. 106 (1986) 569–580. [Google Scholar]
  18. C. Sulem and P.-L. Sulem, Quelques résultats de régularité pour les équations de la turbulence de Langmuir. C. R. Acad. Sci. Paris Sér. A-B 289 (1979) 173–176. [Google Scholar]
  19. C. Sulem and P.-L. Sulem, The nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse. Appl. Math. Sci. 139, Springer (1999). [Google Scholar]
  20. B. Texier, Derivation of the Zakharov equations. Arch. Rat. Mech. Anal. (to appear). [Google Scholar]
  21. V.E. Zakharov, S.L. Musher and A.M. Rubenchik, Hamiltonian approach to the description of nonlinear plasma phenomena. Phys. Reports 129 (1985) 285–366. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you