Free Access
Volume 41, Number 2, March-April 2007
Special issue on Molecular Modelling
Page(s) 333 - 350
Published online 16 June 2007
  1. H.C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72 (1980) 2384–2393. [CrossRef] [Google Scholar]
  2. E.J. Barth, B.B. Laird and B.J. Leimkuhler, Generating generalized distributions from dynamical simulation. J. Chem. Phys. 118 (2003) 5759–5768. [CrossRef] [Google Scholar]
  3. E. Barth, B. Leimkuhler and C. Sweet, Approach to thermal equilibrium in biomolecular simulation, in New Algorithms for Macromolecular Simulation, B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte and R. Skeel Eds., Springer Lecture Notes in Computational Science and Engineering 49 (2006). [Google Scholar]
  4. L. Boltzmann, On certain questions of the theory of gases. Nature 51 (1895) 413–415. [CrossRef] [Google Scholar]
  5. S.D. Bond, B.J. Leimkuhler and B.B. Laird, The Nosé-Poincaré method for constant temperature molecular dynamics. J. Comput. Phys. 151 (1999) 114–134. [Google Scholar]
  6. A.C. Branka and K.W. Wojciechowski, Generalization of Nosé and Nosé-Hoover isothermal dynamics. Phys. Rev. E 62 (2000) 3281–3292. [CrossRef] [Google Scholar]
  7. A. Bulgac and D. Kusnezov, Canonical ensemble averages from pseudomicrocanonical dynamics. Phys. Rev. A 42 (1990) 5045–5048. [CrossRef] [PubMed] [Google Scholar]
  8. E. Cancés, F. Legoll and G. Stoltz, Theoretical and numerical comparison of some sampling methods for molecular dynamics. ESAIM: M2AN (to appear). [Google Scholar]
  9. R. Car and M. Parinello, Unified approach for molecular dynamics and density function theory. Phys. Rev. Lett. 55 (1985) 2471–2475. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  10. C. Chipot, Free energy calculations in biological systems: how useful are they in practice, in New Algorithms for Macromolecular Simulation, B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte and R. Skeel Eds., Springer Lecture Notes in Computational Science and Engineering 49 (2006). [Google Scholar]
  11. J. Delhommelle, Correspondence between configurational temperature and molecular kinetic temperature thermostats. J. Chem. Phys. 117 (2002) 6016–602. [CrossRef] [Google Scholar]
  12. E.G. Flekkøy and P.V. Coveney, From molecular dynamics to dissipative particle dynamics. Phys. Rev. Lett. 83 (1999) 1775–1778. [CrossRef] [Google Scholar]
  13. D. Frenkel and B. Smith, Understanding Molecular Simulation. Academic, London (1996). [Google Scholar]
  14. S.P.A. Gill, Z. Jia, B. Leimkuhler and A.C.F. Cocks, Rapid thermal equilibration in coarse-grained molecular dynamics. Phys. Rev. B 73 (2006) 184304. [CrossRef] [Google Scholar]
  15. E. Hernandez, Metric-tensor flexible-cell for isothermal-isobaric molecular dynamics simulation. J. Chem. Phys. 115 (2001) 10282–10290. [CrossRef] [Google Scholar]
  16. W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31 (1985) 1695–1697. [CrossRef] [PubMed] [Google Scholar]
  17. W.G. Hoover, K. Aoki, C.G. Hoover and S.V. De Groot, Time reversible deterministic thermostats. Physica D (2004) 253–267. [Google Scholar]
  18. J.H. Jeans, On the vibrations set up in molecules by collisions. Phil. Mag. 6 (1903) 279–286. [Google Scholar]
  19. J.H. Jeans, On the partition of energy between matter and ether. Phil. Mag. 10 (1905) 91–97. [Google Scholar]
  20. O.G. Jepps, G. Ayton and D.J. Evans, Microscopic expressions for the thermodynamic temperature. Phys. Rev. E, 62 (2000) 4757–4763. [Google Scholar]
  21. Z. Jia and B.J. Leimkuhler, A projective thermostatting dynamics technique. Multiscale Model. Simul. 4 (2005) 563–583. [CrossRef] [MathSciNet] [Google Scholar]
  22. D. Kusnezov, Diffusive aspects of global demons. Phys. Lett. A 166 (1992) 315–320. [CrossRef] [MathSciNet] [Google Scholar]
  23. F. Legoll, M. Luskin and R. Moeckel, Non-ergodicity of the Nosé-Hoover thermostatted harmonic oscillator, arXiv preprint (November 2005, math.DS/0511178). ARMA (to appear). [Google Scholar]
  24. B.J. Leimkuhler and C.R. Sweet, The canonical ensemble via symplectic integrators using Nosé and Nosé-Poincaré chains. J. Chem. Phys. 121 (2004) 108–116. [CrossRef] [PubMed] [Google Scholar]
  25. B.J. Leimkuhler and C.R. Sweet, A Hamiltonian formulation for recursive multiple thermostats in a common timescale. SIAM J. Appl. Dyn. Sys. 4 (2005) 187–216. [Google Scholar]
  26. W.K. Liu, E.G. Karpov, S. Zhang and H.S. Park, An introduction to computational nano-mechanics and materials. Comput. Meth. Appl. Mech. Eng. 193 (2004) 1529–1578. [Google Scholar]
  27. Y. Liu and M.E. Tuckerman, Generalized Gaussian Moment Thermostatting: A new continuous dynamical approach to the canonical ensemble. J. Chem. Phys. 112 (2000) 1685–1700. [CrossRef] [Google Scholar]
  28. G.J. Martyna, M.E. Tuckerman and M.L. Klein, Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 97 (1992) 2635–2643. [NASA ADS] [CrossRef] [Google Scholar]
  29. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81 (1984) 511–519. [NASA ADS] [CrossRef] [Google Scholar]
  30. J. Powles, G. Rickayzen and D.M. Heyes, Temperature: old, new and middle-aged. Mol. Phys. 103 (2005) 1361–1373. [CrossRef] [Google Scholar]
  31. L. Rosso, P. Mináry, Z. Zhu and M.E. Tuckerman, On the use of the adiabatic molecular dynamics technique in the calculation of free energy profiles. J. Chem. Phys. 116 (2002) 4389–4402. [CrossRef] [Google Scholar]
  32. H.H. Rugh, Dynamical approach to temperature. Phys. Rev. Lett. 78 (1997) 772–774. [CrossRef] [Google Scholar]
  33. T. Schneider and E. Stoll, Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17 (1978) 1302–1322. [CrossRef] [Google Scholar]
  34. J.B. Sturgeon and B.B. Laird, Symplectic algorithm for constant-pressure molecular-dynamics using a Nosé-Poincare thermostat. J. Chem. Phys. 112 (2000) 3474–3482. [CrossRef] [Google Scholar]
  35. E.B. Tadmor, M. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids. Philos. Mag. A 73 (1996) 1529–1563. [CrossRef] [Google Scholar]
  36. R.G. Winkler, V. Kraus and P. Reineker, Time-reversible and phase-conserving molecular dynamics at constant temperature. J. Chem. Phys. 102 (1995) 9018–9025. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you