Free Access
Issue
ESAIM: M2AN
Volume 41, Number 2, March-April 2007
Special issue on Molecular Modelling
Page(s) 281 - 296
DOI https://doi.org/10.1051/m2an:2007022
Published online 16 June 2007
  1. G.B. Bacskay, A quadratically convergent Hartree-Fock (QC-SCF) method - application to closed shell systems. Chem. Phys. 61 (1981) 385–404. [CrossRef] [Google Scholar]
  2. S.P. Bhattacharyya, Accelerated convergence in SCF calculations and level shifting technique. Chem. Phys. Lett. 56 (1978) 395–398. [CrossRef] [Google Scholar]
  3. S.F. Boys, Electronic wave functions. 1. A general method of calculation for the stationary states of any molecular system. Proc. R. Soc. Lond. A 200 (1950) 542–554. [CrossRef] [Google Scholar]
  4. E. Cancés, in Mathematical Models and Methods for ab initio Quantum Chemistry, M. Defranceschi and C. Le Bris Eds., Lecture Notes in Chemistry 74, Springer, Berlin (2000). [Google Scholar]
  5. E. Cancés, Self-consistent field algorithms for Kohn-Sham models with fractional occupation numbers. J. Chem. Phys. 114 (2001) 10616–10622. [CrossRef] [Google Scholar]
  6. E. Cancés and C. Le Bris, On the convergence of SCF algorithms for the Hartree-Fock equations. ESAIM: M2AN 34 (2000) 749–774. [CrossRef] [EDP Sciences] [Google Scholar]
  7. E. Cancés and C. Le Bris, Can we outperform the DIIS approach for electronic structure calculations? Int. J. Quantum Chem. 79 (2000) 82–90. [CrossRef] [Google Scholar]
  8. E. Cancès, K.N. Kudin, G.E. Scuseria and G. Turinici, Quadratically convergent algorithm for fractional occupation numbers in density functional theory. J. Chem. Phys. 118 (2003) 5364–5368. [CrossRef] [Google Scholar]
  9. A.D. Daniels and G.E. Scuseria, Converging difficult SCF cases with conjugate gradient density matrix search. Phys. Chem. Chem. Phys. 2 (2000) 2173–2176. [CrossRef] [Google Scholar]
  10. M.D. de Andrade, K.C. Mundim and L.A.C. Malbouisson, GSA algorithm applied to electronic structure: Hartree-Fock-GSA method. Int. J. Quant. Chem. 103 (2005) 493–499. [CrossRef] [Google Scholar]
  11. R.M. Dreizler and E.K.U. Gross, Density functional theory. Springer, Berlin (1990). [Google Scholar]
  12. A. Fouqueau, S. Mer, M.E. Casida, L.M.L. Daku, A. Hauser, T. Mineva and F. Neese, Comparison of density functionals for energy and structural differences between the high-[T-5(2g) : (t(2g))(4)(e(g))(2)] and low-[(1)A(1g) : (t(2g))(6)(e(g))(0)] spin states of the hexaquoferrous cation [ Fe(H2O)(6)] (2+). J. Chem. Phys. 120 (2004) 9473–9486. [CrossRef] [PubMed] [Google Scholar]
  13. J.B. Francisco, J.M. Martinez and L. Martinez, Globally convergent trust-region methods for self-consitent field electronic structure calculations. J. Chem. Phys. 121 (2004) 10863–10878. [CrossRef] [PubMed] [Google Scholar]
  14. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian 03, Revision C.02. Gaussian Inc., Wallingford CT (2004). [Google Scholar]
  15. D.R. Hartree, The calculation of atomic structures. Wiley (1957). [Google Scholar]
  16. T. Helgaker, H. Larsen, J. Olsen and P. Jorgensen, Direct optimization of the AO density matrix in Hartree-Fock and Kohn-Sham theories. Chem. Phys. Lett. 327 (2000) 397–403. [CrossRef] [Google Scholar]
  17. P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136 (1964) 864B–B871. [Google Scholar]
  18. H. Hsu, E.R. Davidson and R.M. Pitzer, SCF method for hole states.J. Chem. Phys. 65 (1976) 609–613. [Google Scholar]
  19. B.G. Johnson, P.M.W. Gill and J.A. Pople, The performance of a family of Density Functional methods. J. Chem. Phys. 98 (1993) 5612–5626. [CrossRef] [Google Scholar]
  20. G. Karlstrom, Dynamical damping based on energy minimization for use in ab initio molecular-orbital SCF calculations. Chem. Phys. Lett. 67 (1979) 348–350. [CrossRef] [Google Scholar]
  21. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (1965) A1133–A1138. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  22. K.N. Kudin, G.E. Scuseria and E. Cancès, A black-box self-consistent field convergence algorithm: One step closer. J. Chem. Phys. 116 (2002) 8255–8261. [CrossRef] [Google Scholar]
  23. P.L. Lions, Solutions of Hartree-Fock equations for coulomb-systems. Comm. Math. Phys. 109 (1987) 33–97. [Google Scholar]
  24. A.V. Mitin, The dynamic level shift method for improving the convergence of the SCF procdure. J. Comput. Chem. 9 (1988) 107–110. [CrossRef] [Google Scholar]
  25. M.A. Natiello and G.E. Scuseria, Convergence properties of Hartree-Fock SCF molecular calculations. Int. J. Quantum Chem. 26 (1984) 1039–1049. [CrossRef] [Google Scholar]
  26. P. Pulay, Convergence acceleration of iterative sequences - the case of SCF iteration. Chem. Phys. Lett. 73 (1980) 393–398. [CrossRef] [Google Scholar]
  27. P. Pulay, Improved SCF convergence acceleration. J. Comp. Chem. 3 (1982) 556–560. [Google Scholar]
  28. A.D. Rabuck and G.E. Scuseria, Improving self-consistent field convergence by varying occupation numbers. J. Chem. Phys. 110 (1999) 695–700. [CrossRef] [Google Scholar]
  29. M. Ramek and H.P. Fritzer, New aspects of dynamical damping in ab initio molecular SCF calculations. Comput. Chem. 6 (1982) 165–168. [CrossRef] [Google Scholar]
  30. C.C.J. Roothan, New developments in molecular orbital theory. Rev. Mod. Phys. 23 (1951) 69–89. [CrossRef] [Google Scholar]
  31. Y. Saad and M.H. Schultz, GMRES - a generalized minimal residual algorithm for solving nonsymmetric linear-systems. SIAM J. Sci. Stat. Comput. 7 (1986) 856–869. [Google Scholar]
  32. V.R. Saunders and I.H. Hillier, Level-shifting method for converging closed shell Hartree-Fock wave-functions. Int. J. Quant. Chem. 7 (1973) 699–705. [CrossRef] [Google Scholar]
  33. N.E. Schultz, Y. Zhao and D.G. Truhlar, Databases for transition element bonding: Metal-metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations. J. Phys. Chem. A 109 (2005) 4388–4403. [CrossRef] [PubMed] [Google Scholar]
  34. G.E. Scuseria, Linear scaling density functional calculations with Gaussian orbitals. J. Phys. Chem. A 103 (1999) 4782–4790. [CrossRef] [Google Scholar]
  35. L. Thogersen, J. Olsen, D. Yeager, P. Jorgensen, P. Salek and T. Helgaker, The trust-region self-consistent field method: Towards a black-box optimization in Hartree-Fock and Kohn-Sham theories. J. Chem. Phys. 121 (2004) 16–27. [CrossRef] [PubMed] [Google Scholar]
  36. L. Thogersen, J. Olsen, A. Kohn, P. Jorgensen, P. Salek and T. Helgaker, The trust-region self-consitent field method in Kohn-Sham density-functional theory. J. Chem. Phys. 123 (2005) 074103. [CrossRef] [PubMed] [Google Scholar]
  37. T.V. Voorhis and M. Head-Gordon, A geometric approach to direct minimization. Mol. Phys. 100 (2002) 1713–1721. [CrossRef] [Google Scholar]
  38. O.V. Yazyev, K.N. Kudin and G.E. Scuseria, Efficient algorithm for band connectivity resolution. Phys. Rev. B 65 (2002) 205117. [CrossRef] [Google Scholar]
  39. M.C. Zerner and M. Hehenberger, Dynamical damping scheme for converging molecular SCF calculations. Chem. Phys. Lett. 62 (1979) 550–554. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you