Free Access
Issue
ESAIM: M2AN
Volume 41, Number 2, March-April 2007
Special issue on Molecular Modelling
Page(s) 427 - 445
DOI https://doi.org/10.1051/m2an:2007024
Published online 16 June 2007
  1. S.S. Alexandre, E. Artacho, J.M. Soler and H. Chacham, Small polarons in dry DNA. Phys. Rev. Lett. 91 (2003) 108105. [CrossRef] [PubMed] [Google Scholar]
  2. C. Ashman, C. Först, K. Schwarz and P. Blöchl, First-principles calculations of strontium on Si(001). Phys. Rev. B 69 (2004) 075309. [CrossRef] [Google Scholar]
  3. P.G. Bolhuis, D. Chandler, C. Dellago and P.L. Geissler, Transition path sampling: Throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 53 (2002) 291–318. [CrossRef] [PubMed] [Google Scholar]
  4. M. Born, On the stability of crystal lattices. I. Proc. Cambridge Philos. Soc. 36 (1940) 160. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Born and K. Huang, Dynamical Theory of Crystal Lattices . Clarendon, Oxford (1956). [Google Scholar]
  6. J.Q. Broughton, F.F. Abraham, N. Bernstein and E. Kaxiras, Concurrent coupling of length scales: Methodology and application. Phys. Rev. B 60 (1999) 2391–2403. [CrossRef] [Google Scholar]
  7. M.J. Buehler, F.F. Abraham and H.J. Gao, Hyperelasticity governs dynamic fracture at a critical length scale. Nature 426 (2003) 141–146. [CrossRef] [PubMed] [Google Scholar]
  8. W. Cai, V.V. Bulatov, J. Chang, J. Li and S. Yip, Dislocation core effects on mobility, in Dislocations in Solids, Vol. 12, Chap. 64, F.R.N. Nabarro and J.P. Hirth Eds., Elsevier, Amsterdam (2004) 1–80. [Google Scholar]
  9. G.H. Campbell, S.M. Foiles, H.C. Huang, D.A. Hughes, W.E. King, D.H. Lassila, D.J. Nikkel, T.D. De la Rubia, J.Y. Shu and V.P. Smyshlyaev, Multi-scale modeling of polycrystal plasticity: A workshop report. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 251 (1998) 1–22. [Google Scholar]
  10. E. Clementi, Global scientific and engineering simulations on scalar, vector and parallel lcap-type supercomputers. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 326 (1988) 445–470. [CrossRef] [Google Scholar]
  11. T.D. De la Rubia and V.V. Bulatov, Materials research by means of multiscale computer simulation. Mrs Bull. 26 (2001) 169–175. [CrossRef] [Google Scholar]
  12. W. E and B. Engquist, The heterogeneous multiscale methods. Comm. Math. Sci. 1 (2003) 87–132. [Google Scholar]
  13. W. E and B. Engquist, Multiscale modeling and computation. Notices AMS 50 (2003) 1062–1070. [Google Scholar]
  14. W.N. E, W.Q. Ren and E. Vanden-Eijnden, String method for the study of rare events. Phys. Rev. B 66 (2002) 052301. [Google Scholar]
  15. R.G. Endres, D.L. Cox and R.R. Singh, The quest for high-conductance DNA. Rev. Mod. Phys. 76 (2004) 195–214. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  16. C. Först, C. Ashman, K. Schwarz and P. Blöchl, The interface between silicon and a high-k oxide. Nature 427 (2004) 53. [CrossRef] [PubMed] [Google Scholar]
  17. C. Först, K. Schwarz and P. Blöchl, Structural and electronic properties of the interface between the high-k oxide LaAlO3 and Si(001). Phys. Rev. Lett. 95 (2005) 137602. [CrossRef] [PubMed] [Google Scholar]
  18. M.J. Frisch et al. Gaussian 03 . Gaussian, Inc. (2003). [Google Scholar]
  19. A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos and S. Suresh, Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48 (2000) 2277–2295. [CrossRef] [Google Scholar]
  20. A.J. Heeger, S. Kivelson, J.R. Schrieffer and W.-P. Su, Solitons in conducting polymers. Rev. Mod. Phys. 60 (1988) 781–851. [CrossRef] [Google Scholar]
  21. R. Hill, Acceleration waves in solids. J. Mech. Phys. Solids 10 (1962) 1–16. [CrossRef] [MathSciNet] [Google Scholar]
  22. International technology roadmap for semiconductors (2003). Available at http://public.itrs.net/ [Google Scholar]
  23. H. Jonsson, G. Mills and K.W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations, B.J. Berne, G. Ciccotti and D.F. Coker Eds., World Scientific (1998) 385–404. [Google Scholar]
  24. H. Jónsson, G. Mills and K.W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations, Chap. 16, B.J. Berne, G. Ciccotti and D.F. Coker. Eds., World Scientific (1998) 385–404. [Google Scholar]
  25. E. Kaxiras and S. Yip, Modelling and simulation of solids – Editorial overview. Curr. Opin. Solid State Mat. Sci. 3 (1998) 523–525. [CrossRef] [Google Scholar]
  26. A.E. Leanhardt, T.A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D.E. Pritchard and W. Ketterle, Cooling bose-einstein condensates below 500 picokelvin. Science 301 (2003) 1513–1515. [CrossRef] [PubMed] [Google Scholar]
  27. J. Li, K.J.V. Vliet, T. Zhu, S. Yip and S. Suresh, Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418 (2002) 307–310. [CrossRef] [PubMed] [Google Scholar]
  28. J. Li, T. Zhu, S. Yip, K.J.V. Vliet and S. Suresh, Elastic criterion for dislocation nucleation. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 365 (2004) 25–30. [Google Scholar]
  29. M.J. Lii, X.F. Chen, Y. Katz and W.W. Gerberich, Dislocation modeling and acoustic-emission observation of alternating ductile/brittle events in Fe-3wt% Si crystals. Acta Metall. Mater. 38 (1990) 2435. [CrossRef] [Google Scholar]
  30. X. Lin, J. Li and S. Yip, Controlling bending and twisting of conjugated polymers via solitons. Phys. Rev. Lett. 95 (2005) 198303. [CrossRef] [PubMed] [Google Scholar]
  31. X. Lin, J. Li, E. Smela and S. Yip, Polaron-induced conformation change of a single polypyrrole chain: An intrinsic actuation mechanism. Int. J. Quant. Chem. 102 (2005) 980–985. [CrossRef] [Google Scholar]
  32. X. Lin, J. Li, C. Foerst and S. Yip, Multiple self-localized electronic states in trans-polyacetylene. Proc. Natl. Acad. Sci. 103 (2006) 8943–8946. [CrossRef] [Google Scholar]
  33. W.A. Little, Possibility of synthesizing an organic superconductor. Phys. Rev. 134 (1964) A1416–A1424. [CrossRef] [Google Scholar]
  34. G. Lu and E. Kaxiras, Overview of multiscale simulation of materials, in Handbook of Theoretical and Computational Nanotechnology, Vol. X, M. Rieth and W. Schommers Eds., American Scientific Publ. (2005) 1–33. [Google Scholar]
  35. G. Lu, E.B. Tadmor and E. Kaxiras, From electrons to finite elements: A concurrent multiscale approach for metals. Phys. Rev. B 73 (2006) 024108. [CrossRef] [Google Scholar]
  36. A.G. MacDiarmid, “Synthetic metals”: A novel role for organic polymers. Rev. Mod. Phys. 73 (2001) 701–712. [CrossRef] [Google Scholar]
  37. R. McKee, F. Walker and M. Chisholm, Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett. 81 (1998) 3014. [CrossRef] [Google Scholar]
  38. T.A. Michalske and S.W. Freiman, A molecular interpretation of stress-corrosion in silica. Nature 295 (1982) 511–512. [CrossRef] [Google Scholar]
  39. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter and J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding and embedded-atom calculations. Phys. Rev. B 6322 (2001) 224106. [CrossRef] [Google Scholar]
  40. J.W. Morris and C.R. Krenn, The internal stability of an elastic solid. Philos. Mag. A 80 (2000) 2827–2840. [CrossRef] [Google Scholar]
  41. S. Ogata, J. Li, N. Hirosaki, Y. Shibutani and S. Yip, Ideal shear strain of metals and ceramics. Phys. Rev. B 70 (2004) 104104. [CrossRef] [Google Scholar]
  42. M. Ortiz and R. Phillips, Nanomechanics of defects in solids. Advan. Appl. Mech. 36 (1999) 1–79. [CrossRef] [Google Scholar]
  43. R.E. Peierls, Quantum Theory of Solids . The International series of monographs on physics. Oxford University Press, New York (1955). [Google Scholar]
  44. R. Phillips, Multiscale modeling in the mechanics of materials. Curr. Opin. Solid State Mat. Sci. 3 (1998) 526–532. [CrossRef] [Google Scholar]
  45. J.R. Rice, in Theoretical and Applied Mechanics, Vol. 1., W.T. Koiter Ed., North-Holland, Amsterdam (1976) 207. [Google Scholar]
  46. S. Roth and D. Carroll, One-Dimensional Metals . Wiley-VCH, Weinheim, 2nd edn. (2004). [Google Scholar]
  47. R.E. Rudd and J.Q. Broughton, Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys. Rev. B 58 (1998) R5893–R5896. [CrossRef] [Google Scholar]
  48. J.J.P. Stewart, MOPAC 2002 Manual . Fujitsu Ltd., Tokyo (2002). [Google Scholar]
  49. F.H. Stillinger and T.A. Weber, Computer-simulation of local order in condensed phases of silicon. Phys. Rev. B 31 (1985) 5262–5271. [CrossRef] [Google Scholar]
  50. W.P. Su, J.R. Schrieffer and A.J. Heeger, Solitons in polyacetylene. Phys. Rev. Lett. 42 (1979) 1698–1701. [CrossRef] [Google Scholar]
  51. E.B. Tadmor, M. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids. Philos. Mag. A-Phys. Condens. Matter Struct. Defect Mech. Prop. 73 (1996) 1529–1563. [Google Scholar]
  52. K.J.V. Vliet, J. Li, T. Zhu, S. Yip and S. Suresh, Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys. Rev. B 67 (2003) 104105. [CrossRef] [Google Scholar]
  53. D.C. Wallace, Thermodynamics of Crystals . Wiley, New York (1972). [Google Scholar]
  54. J.H. Wang, J. Li, S. Yip, S. Phillpot and D. Wolf, Mechanical instabilities of homogeneous crystals. Phys. Rev. B 52 (1995) 12627–12635. [CrossRef] [Google Scholar]
  55. J.H. Wang, J. Li, S. Yip, D. Wolf and S. Phillpot, Unifying two criteria of Born: Elastic instability and melting of homogeneous crystals. Physica A 240 (1997) 396–403. [CrossRef] [Google Scholar]
  56. S.M. Wiederhorn, Fracture surface energy of glass. J. Am. Ceram. Soc. 52 (1969) 99–105. [CrossRef] [Google Scholar]
  57. S. Yip Ed., Handbook of Materials Modeling . Springer, Dordrecht (2005). [Google Scholar]
  58. Y. Yu, M. Nakano and T. Ikeda, Directed bending of a polymer film by light. Nature 425 (2003) 145. [CrossRef] [PubMed] [Google Scholar]
  59. Z. Zhou and B. Joos, Stability criteria for homogeneously stressed materials and the calculation of elastic constants. Phys. Rev. B 54 (1996) 3841–3850. [CrossRef] [Google Scholar]
  60. T. Zhu, J. Li and S. Yip, Atomistic study of dislocation loop emission from a crack tip. Phys. Rev. Lett. 93 (2004) 025503. [CrossRef] [PubMed] [Google Scholar]
  61. T. Zhu, J. Li and S. Yip, Atomistic configurations and energetics of crack extension in silicon. Phys. Rev. Lett. 93 (2004) 205504. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you