Free Access
Volume 41, Number 4, July-August 2007
Page(s) 801 - 824
Published online 04 October 2007
  1. Y. Achdou and C. Bernardi, Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable. C.R. Acad. Sci. Paris Série I 333 (2001) 693–698.
  2. Y. Achdou, C. Bernardi and F. Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17–42. [CrossRef] [MathSciNet]
  3. F. Ben Belgacem, The Mortar finite element method with Lagrangian multiplier. Numer. Math. 84 (1999) 173–197. [CrossRef] [MathSciNet]
  4. C. Bernardi and N. Chorfi, Mortar spectral element methods for elliptic equations with discontinuous coefficients. Math. Models Methods Appl. Sci. 12 (2002) 497–524. [CrossRef] [MathSciNet]
  5. C. Bernardi and Y. Maday, Spectral Methods, in the Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1997) 209–485.
  6. C. Bernardi and Y. Maday, Spectral element discretizations of the Poisson equation with mixed boundary conditions. Appl. Math. Inform. 6 (2001) 1–29. [MathSciNet]
  7. C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579–608. [CrossRef] [MathSciNet]
  8. C. Bernardi, M. Dauge and Y. Maday, Relèvements de traces préservant les polynômes. C.R. Acad. Sci. Paris Série I 315 (1992) 333–338.
  9. C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Collège de France Seminar XI, H. Brezis and J.-L. Lions Eds., Pitman (1994) 13–51.
  10. C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques et Applications 45. Springer-Verlag (2004).
  11. C. Bernardi, Y. Maday and F. Rapetti, Basics and some applications of the mortar element method. GAMM – Gesellschaft für Angewandte Mathematik und Mechanik 28 (2005) 97–123.
  12. S. Bertoluzza and V. Perrier, The mortar method in the wavelet context. ESAIM: M2AN 35 (2001) 647–673. [CrossRef] [EDP Sciences]
  13. S. Clain and R. Touzani, Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients. RAIRO Modél. Math. Anal. Numér. 31 (1997) 845–870. [MathSciNet]
  14. V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms . Springer-Verlag (1986).
  15. Y. Maday and E.M. Rønquist, Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries. Comput. Methods Appl. Mech. Engrg. 80 (1990) 91–115. [CrossRef] [MathSciNet]
  16. N.G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Sup. Pisa 17 (1963) 189–206.
  17. NAG Library Mark 21, The Numerical Algorithms Group Ltd, Oxford (2004).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you