Free Access
Issue
ESAIM: M2AN
Volume 42, Number 1, January-February 2008
Page(s) 141 - 174
DOI https://doi.org/10.1051/m2an:2007056
Published online 12 January 2008
  1. H. Abboud, V. Girault and T. Sayah, Two-grid finite element scheme for the fully discrete time-dependent Navier-Stokes problem. C. R. Acad. Sci. Paris, Ser. I 341 (2005). [Google Scholar]
  2. H. Abboud, V. Girault and T. Sayah, Second-order two-grid finite element scheme for the fully discrete transient Navier-Stokes equations. Preprint, http://www.ann.jussieu.fr/publications/2007/R07040.html. [Google Scholar]
  3. R.-A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  4. D. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations. Calcolo 21 (1984) 337–344. [CrossRef] [MathSciNet] [Google Scholar]
  5. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). [Google Scholar]
  6. V. Girault and J.-L. Lions, Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Portugal. Math. 58 (2001) 25–57. [Google Scholar]
  7. V. Girault and J.-L. Lions, Two-grid finite-element schemes for the transient Navier-Stokes equations. ESAIM: M2AN 35 (2001) 945–980. [CrossRef] [EDP Sciences] [Google Scholar]
  8. V. Girault and P.-A. Raviart, Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms, in Springer Series in Computational Mathematics 5, Springer-Verlag, Berlin (1986). [Google Scholar]
  9. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Monographs and Studies in Mathematics 24. Pitman, Boston, (1985). [Google Scholar]
  10. F. Hecht and O. Pironneau, FreeFem++. See: http://www.freefem.org. [Google Scholar]
  11. O.A. Ladyzenskaya, The Mathematical Theory of Viscous Incompressible Flow. (In Russian, 1961), First English translation, Gordon & Breach, New York (1963). [Google Scholar]
  12. W. Layton, A two-level discretization method for the Navier-Stokes equations. Computers Math. Applic. 26 (1993) 33–38. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  13. W. Layton and W. Lenferink, Two-level Picard-defect corrections for the Navier-Stokes equations at high Reynolds number. Applied Math. Comput. 69 (1995) 263–274. [CrossRef] [MathSciNet] [Google Scholar]
  14. J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969). [Google Scholar]
  15. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications I. Dunod, Paris (1968). [Google Scholar]
  16. J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). [Google Scholar]
  17. R. Temam, Une méthode d'approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France 98 (1968) 115–152. [Google Scholar]
  18. M.F. Wheeler, A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM. J. Numer. Anal. 10 (1973) 723–759. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Xu, Some Two-Grid Finite Element Methods. Tech. Report, P.S.U. (1992). [Google Scholar]
  20. J. Xu, A novel two-grid method of semilinear elliptic equations. SIAM J. Sci. Comput. 15 (1994) 231–237. [CrossRef] [MathSciNet] [Google Scholar]
  21. J. Xu, Two-grid finite element discretization techniques for linear and nonlinear PDE. SIAM J. Numer. Anal. 33 (1996) 1759–1777. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you