Free Access
Issue
ESAIM: M2AN
Volume 42, Number 2, March-April 2008
Page(s) 303 - 331
DOI https://doi.org/10.1051/m2an:2008005
Published online 27 March 2008
  1. P. Angot, V. Dolejší, M. Feistauer and J. Felcman, Analysis of a combined barycentric finite volume-nonconforming finite element method for nonlinear convection-diffusion problems. Appl. Math. 4 (1998) 263–310. [CrossRef] [MathSciNet] [Google Scholar]
  2. H. Bijl and P. Wesseling, A unified method for computing incompressible and compressible flows in boundary-fitted coordinates. J. Comp. Phys. 141 (1998) 153–173. [NASA ADS] [CrossRef] [Google Scholar]
  3. M.O. Bristeau, R. Glowinski, L. Dutto, J. Périaux and G. Rogé, Compressible viscous flow calculations using compatible finite element approximations. Internat. J. Numer. Methods Fluids 11 (1990) 719–749. [CrossRef] [MathSciNet] [Google Scholar]
  4. V. Casulli and D. Greenspan, Pressure method for the numerical solution of transient, compressible fluid flows. Internat. J. Numer. Methods Fluids 4 (1984) 1001–1012. [CrossRef] [Google Scholar]
  5. A.J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comp. 22 (1968) 745–762. [CrossRef] [MathSciNet] [Google Scholar]
  6. P.G. Ciarlet, Finite elements methods – Basic error estimates for elliptic problems, in Handbook of Numerical Analysis II, P. Ciarlet and J.-L. Lions Eds., North Holland (1991) 17–351. [Google Scholar]
  7. P. Colella and K. Pao, A projection method for low speed flows. J. Comp. Phys. 149 (1999) 245–269. [CrossRef] [Google Scholar]
  8. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numér. 7 (1973) 33–75. [Google Scholar]
  9. K. Deimling, Nonlinear Functional Analysis. Springer, New-York (1980). [Google Scholar]
  10. I. Demirdžić, Ž. Lilek and M. Perić, A collocated finite volume method for predicting flows at all speeds. Internat. J. Numer. Methods Fluids 16 (1993) 1029–1050. [CrossRef] [Google Scholar]
  11. V. Dolejší, M. Feistauer, J. Felcman and A. Kliková, Error estimates for barycentric finite volumes combined with nonconforming finite elements applied to nonlinear convection-diffusion problems. Appl. Math. 47 (2002) 301–340. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer (2004). [Google Scholar]
  13. R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563–594. [CrossRef] [MathSciNet] [Google Scholar]
  14. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis VII, P. Ciarlet and J.-L. Lions Eds., North Holland (2000) 713–1020. [Google Scholar]
  15. E. Feireisl, Dynamics of viscous compressible flows, Oxford Lecture Series in Mathematics and its Applications 6. Oxford University Press (2004). [Google Scholar]
  16. H. Feistauer, J. Felcman and I. Straškraba, Mathematical and computational methods for compressible flows, Oxford Science Publications. Clarendon Press (2003). [Google Scholar]
  17. M. Fortin, H. Manouzi and A. Soulaimani, On finite element approximation and stabilization methods for compressible viscous flows. Internat. J. Numer. Methods Fluids 17 (1993) 477–499. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.-L. Guermond and L. Quartapelle, A projection FEM for variable density incompressible flows. J. Comp. Phys. 165 (2000) 167–188. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.-L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Engrg. 195 (2006) 6011–6045. [CrossRef] [MathSciNet] [Google Scholar]
  20. F.H. Harlow and A.A. Amsden, Numerical calculation of almost incompressible flow. J. Comp. Phys. 3 (1968) 80–93. [NASA ADS] [CrossRef] [Google Scholar]
  21. F.H. Harlow and A.A. Amsden, A numerical fluid dynamics calculation method for all flow speeds. J. Comp. Phys. 8 (1971) 197–213. [CrossRef] [Google Scholar]
  22. R.I. Issa, Solution of the implicitly discretised fluid flow equations by operator splitting. J. Comp. Phys. 62 (1985) 40–65. [CrossRef] [Google Scholar]
  23. R.I. Issa and M.H. Javareshkian, Pressure-based compressible calculation method utilizing total variation diminishing schemes. AIAA J. 36 (1998) 1652–1657. [CrossRef] [Google Scholar]
  24. R.I. Issa, A.D. Gosman and A.P. Watkins, The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme. J. Comp. Phys. 62 (1986) 66–82. [CrossRef] [Google Scholar]
  25. K.C. Karki and S.V. Patankar, Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations. AIAA J. 27 (1989) 1167–1174. [CrossRef] [Google Scholar]
  26. M.H. Kobayashi and J.C.F. Pereira, Characteristic-based pressure correction at all speeds. AIAA J. 34 (1996) 272–280. [CrossRef] [Google Scholar]
  27. B. Larrouturou, How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comp. Phys. 95 (1991) 59–84. [CrossRef] [MathSciNet] [Google Scholar]
  28. P.-L. Lions, Mathematical topics in fluid mechanics, Volume 2: Compressible models, Oxford Lecture Series in Mathematics and its Applications 10, Oxford University Press (1998). [Google Scholar]
  29. M. Marion and R. Temam, Navier-Stokes equations: Theory and approximation, in Handbook of Numerical Analysis VI, P. Ciarlet and J.-L. Lions Eds., North Holland (1998). [Google Scholar]
  30. F. Moukalled and M. Darwish, A high-resolution pressure-based algorithm for fluid flow at all speeds. J. Comp. Phys. 168 (2001) 101–133. [CrossRef] [Google Scholar]
  31. P. Nithiarasu, R. Codina and O.C. Zienkiewicz, The Characteristic-Based Split (CBS) scheme – a unified approach to fluid dynamics. Internat. J. Numer. Methods Engrg. 66 (2006) 1514–1546. [CrossRef] [MathSciNet] [Google Scholar]
  32. A. Novotný and I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and its Applications 27. Oxford University Press (2004). [Google Scholar]
  33. G. Patnaik, R.H. Guirguis, J.P. Boris and E.S. Oran, A barely implicit correction for flux-corrected transport. J. Comp. Phys. 71 (1987) 1–20. [CrossRef] [Google Scholar]
  34. E.S. Politis and K.C. Giannakoglou, A pressure-based algorithm for high-speed turbomachinery flows. Internat. J. Numer. Methods Fluids 25 (1997) 63–80. [CrossRef] [Google Scholar]
  35. R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differential Equations 8 (1992) 97–111. [CrossRef] [MathSciNet] [Google Scholar]
  36. R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires II. Arch. Rat. Mech. Anal. 33 (1969) 377–385. [Google Scholar]
  37. D.R. van der Heul, C. Vuik and P. Wesseling, Stability analysis of segregated solution methods for compressible flow. Appl. Numer. Math. 38 (2001) 257–274. [CrossRef] [MathSciNet] [Google Scholar]
  38. D.R. van der Heul, C. Vuik and P. Wesseling, A conservative pressure-correction method for flow at all speeds. Comput. Fluids 32 (2003) 1113–1132. [CrossRef] [MathSciNet] [Google Scholar]
  39. J.P. Van Dormaal, G.D. Raithby and B.H. McDonald, The segregated approach to predicting viscous compressible fluid flows. Trans. ASME 109 (1987) 268–277. [Google Scholar]
  40. D. Vidović, A. Segal and P. Wesseling, A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids. J. Comput. Phys. 217 (2006) 277–294. [CrossRef] [MathSciNet] [Google Scholar]
  41. C. Wall, C.D. Pierce and P. Moin, A semi-implicit method for resolution of acoustic waves in low Mach number flows. J. Comp. Phys. 181 (2002) 545–563. [CrossRef] [Google Scholar]
  42. I. Wenneker, A. Segal and P. Wesseling, A Mach-uniform unstructured staggered grid method. Internat. J. Numer. Methods Fluids 40 (2002) 1209–1235. [CrossRef] [MathSciNet] [Google Scholar]
  43. P. Wesseling, Principles of computational fluid dynamics, Springer Series in Computational Mathematics 29. Springer (2001). [Google Scholar]
  44. O.C. Zienkiewicz and R. Codina, A general algorithm for compressible and incompressible flow – Part I. The split characteristic-based scheme. Internat. J. Numer. Methods Fluids 20 (1995) 869–885. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you