Free Access
Volume 42, Number 3, May-June 2008
Page(s) 471 - 492
Published online 03 April 2008
  1. M. Boulakia, Modélisation et analyse mathématique de problèmes d'interaction fluide-structure. Ph.D. thesis, Université de Versailles, France (2004).
  2. L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982) 771. [CrossRef] [MathSciNet]
  3. P.G. Ciarlet, Elasticité tridimensionnelle. Masson (1985).
  4. G.-H. Cottet and E. Maitre, A level-set formulation of immersed boundary methods for fluid-structure interaction problems. C. R. Acad. Sci. Paris, Ser. I 338 (2004) 581–586.
  5. G.-H. Cottet and E. Maitre, A level-set method for fluid-structure interactions with immersed surfaces. Math. Models Methods Appl. Sci. 16 (2006) 415–438. [CrossRef] [MathSciNet]
  6. G.-H. Cottet, E. Maitre and T. Milcent, An Eulerian method for fluid-structure interaction with biophysical applications, in European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006, P. Wesseling, E. Oñate and J. Périaux Eds., TU Delft, The Netherlands (2006).
  7. G.A. Holzapfel, Nonlinear solid mechanics: a continuum approach for engineering. Wiley (2000).
  8. L. Lee and R.J. Leveque, An immersed interface method for incompressible Navier-Stokes equations. SIAM J. Sci. Comp. 25 (2003) 832–856. [CrossRef] [MathSciNet]
  9. E. Maitre, T. Milcent, G.-H. Cottet, A. Raoult and Y. Usson, Applications of level set methods in computational biophysics. Math. Comput. Model. (to appear).
  10. E. Maitre, C. Misbah and A. Raoult, Comparison between advected-field and level-set methods in the study of vesicle dynamics. (In preparation).
  11. J. Merodio and R.W. Ogden, Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Nonlinear Mech. 40 (2005) 213–227. [CrossRef]
  12. R.W. Ogden, Non-linear elastic deformations. Dover Publications (1984).
  13. R.W. Ogden, Nonlinear elasticity, anisoptropy, material staility and residual stresses in soft tissue, in Biomechanics of Soft Tissue in Cardiovascular Systems, G.A. Holzapfel and R.W. Ogden Eds., CISM Course and Lectures Series 441, Springer, Wien (2003) 65–108.
  14. S. Osher and R.P. Fedkiw, Level set methods and Dynamic Implicit Surfaces. Springer (2003).
  15. C.S. Peskin, The immersed boundary method. Acta Numer. 11 (2002) 479–517. [CrossRef] [MathSciNet]
  16. P. Smereka, The numerical approximation of a delta function with application to level-set methods. J. Comp. Phys. 211 (2003) 77–90. [CrossRef]
  17. V.A. Solonikov, Estimates for solutions of nonstationary Navier-Stokes equations. J. Soviet Math. 8 (1977) 467–529. [CrossRef]
  18. M. Sy, D. Bresch, F. Guillén-González, J. Lemoine and M.A. Rodríguez-Bellido, Local strong solution for the incompressible Korteweg model. C. R. Acad. Sci. Paris, Ser. I 342 (2006) 169–174.
  19. H. Triebel, Interpolation theory, function spaces, differential operators. North-Holland (1978).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you