Free Access
Issue
ESAIM: M2AN
Volume 42, Number 3, May-June 2008
Page(s) 471 - 492
DOI https://doi.org/10.1051/m2an:2008013
Published online 03 April 2008
  1. M. Boulakia, Modélisation et analyse mathématique de problèmes d'interaction fluide-structure. Ph.D. thesis, Université de Versailles, France (2004). [Google Scholar]
  2. L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982) 771. [CrossRef] [MathSciNet] [Google Scholar]
  3. P.G. Ciarlet, Elasticité tridimensionnelle. Masson (1985). [Google Scholar]
  4. G.-H. Cottet and E. Maitre, A level-set formulation of immersed boundary methods for fluid-structure interaction problems. C. R. Acad. Sci. Paris, Ser. I 338 (2004) 581–586. [Google Scholar]
  5. G.-H. Cottet and E. Maitre, A level-set method for fluid-structure interactions with immersed surfaces. Math. Models Methods Appl. Sci. 16 (2006) 415–438. [CrossRef] [MathSciNet] [Google Scholar]
  6. G.-H. Cottet, E. Maitre and T. Milcent, An Eulerian method for fluid-structure interaction with biophysical applications, in European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006, P. Wesseling, E. Oñate and J. Périaux Eds., TU Delft, The Netherlands (2006). [Google Scholar]
  7. G.A. Holzapfel, Nonlinear solid mechanics: a continuum approach for engineering. Wiley (2000). [Google Scholar]
  8. L. Lee and R.J. Leveque, An immersed interface method for incompressible Navier-Stokes equations. SIAM J. Sci. Comp. 25 (2003) 832–856. [CrossRef] [MathSciNet] [Google Scholar]
  9. E. Maitre, T. Milcent, G.-H. Cottet, A. Raoult and Y. Usson, Applications of level set methods in computational biophysics. Math. Comput. Model. (to appear). [Google Scholar]
  10. E. Maitre, C. Misbah and A. Raoult, Comparison between advected-field and level-set methods in the study of vesicle dynamics. (In preparation). [Google Scholar]
  11. J. Merodio and R.W. Ogden, Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Nonlinear Mech. 40 (2005) 213–227. [CrossRef] [Google Scholar]
  12. R.W. Ogden, Non-linear elastic deformations. Dover Publications (1984). [Google Scholar]
  13. R.W. Ogden, Nonlinear elasticity, anisoptropy, material staility and residual stresses in soft tissue, in Biomechanics of Soft Tissue in Cardiovascular Systems, G.A. Holzapfel and R.W. Ogden Eds., CISM Course and Lectures Series 441, Springer, Wien (2003) 65–108. [Google Scholar]
  14. S. Osher and R.P. Fedkiw, Level set methods and Dynamic Implicit Surfaces. Springer (2003). [Google Scholar]
  15. C.S. Peskin, The immersed boundary method. Acta Numer. 11 (2002) 479–517. [CrossRef] [MathSciNet] [Google Scholar]
  16. P. Smereka, The numerical approximation of a delta function with application to level-set methods. J. Comp. Phys. 211 (2003) 77–90. [CrossRef] [Google Scholar]
  17. V.A. Solonikov, Estimates for solutions of nonstationary Navier-Stokes equations. J. Soviet Math. 8 (1977) 467–529. [CrossRef] [Google Scholar]
  18. M. Sy, D. Bresch, F. Guillén-González, J. Lemoine and M.A. Rodríguez-Bellido, Local strong solution for the incompressible Korteweg model. C. R. Acad. Sci. Paris, Ser. I 342 (2006) 169–174. [Google Scholar]
  19. H. Triebel, Interpolation theory, function spaces, differential operators. North-Holland (1978). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you