Free Access
Issue
ESAIM: M2AN
Volume 42, Number 4, July-August 2008
Page(s) 667 - 682
DOI https://doi.org/10.1051/m2an:2008022
Published online 05 June 2008
  1. P. Alart, M. Barboteu and F. Lebon, Solution of frictional contact problems by an EBE preconditioner. Comput. Mech. 20 (1997) 370–378. [CrossRef] [Google Scholar]
  2. F. Auricchio, P. Bisegna and C. Lovadina, Finite element approximation of piezoelectric plates. Internat. J. Numer. Methods Engrg. 50 (2001) 1469–1499. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Barboteu, J.R. Fernández and Y. Ouafik, Numerical analysis of two frictionless elastic-piezoelectric contact problems. J. Math. Anal. Appl. 339 (2008) 905–917. [CrossRef] [MathSciNet] [Google Scholar]
  4. R.C. Batra and J.S. Yang, Saint-Venant's principle in linear piezoelectricity. J. Elasticity 38 (1995) 209–218. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Bisegna, F. Lebon and F. Maceri, The unilateral frictional contact of a piezoelectric body with a rigid support, in Contact mechanics (Praia da Consolação, 2001), Solid Mech. Appl. 103, Kluwer Acad. Publ., Dordrecht (2002) 347–354. [Google Scholar]
  6. P.G. Ciarlet, The finite element method for elliptic problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.L. Lions Eds., North Holland (1991) 17–352. [Google Scholar]
  7. G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics. Springer Verlag, Berlin (1976). [Google Scholar]
  8. J.R. Fernández, M. Sofonea and J.M. Viaño, A frictionless contact problem for elastic-viscoplastic materials with normal compliance: Numerical analysis and computational experiments. Numer. Math. 90 (2002) 689–719. [CrossRef] [MathSciNet] [Google Scholar]
  9. R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984). [Google Scholar]
  10. W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. American Mathematical Society-International Press (2002). [Google Scholar]
  11. W. Han, M. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage. J. Comput. Appl. Math. 137 (2001) 377–398. [CrossRef] [MathSciNet] [Google Scholar]
  12. S. Hüeber, A. Matei and B.I. Wohlmuth, A mixed variational formulation and an optimal a priori error estimate for a frictional contact problem in elasto-piezoelectricity. Bull. Math. Soc. Sci. Math. Roumanie 48 (2005) 209–232. [MathSciNet] [Google Scholar]
  13. T. Ideka, Fundamentals of Piezoelectricity. Oxford University Press, Oxford (1990). [Google Scholar]
  14. A. Klarbring, A. Mikelić and M. Shillor, Frictional contact problems with normal compliance. Internat. J. Engrg. Sci. 26 (1988) 811–832. [CrossRef] [MathSciNet] [Google Scholar]
  15. F. Maceri and B. Bisegna, The unilateral frictionless contact of a piezoelectric body with a rigid support. Math. Comput. Modelling 28 (1998) 19–28. [CrossRef] [Google Scholar]
  16. J.A.C. Martins and J.T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal. 11 (1987) 407–428. [CrossRef] [MathSciNet] [Google Scholar]
  17. R.D. Mindlin, Polarisation gradient in elastic dielectrics. Internat. J. Solids Structures 4 (1968) 637–663. [CrossRef] [Google Scholar]
  18. R.D. Mindlin, Continuum and lattice theories of influence of electromechanical coupling on capacitance of thin dielectric films. Internat. J. Solids Structures 5 (1969) 1197–1213. [CrossRef] [Google Scholar]
  19. R.D. Mindlin, Elasticity, piezoelasticity and crystal lattice dynamics. J. Elasticity 4 (1972) 217–280. [CrossRef] [Google Scholar]
  20. A. Morro and B. Straughan, A uniqueness theorem in the dynamical theory of piezoelectricity. Math. Methods Appl. Sci. 14 (1991) 295–299. [CrossRef] [MathSciNet] [Google Scholar]
  21. Y. Ouafik, A piezoelectric body in frictional contact. Bull. Math. Soc. Sci. Math. Roumanie 48 (2005) 233–242. [MathSciNet] [Google Scholar]
  22. M. Sofonea and E.-H. Essoufi, Quasistatic frictional contact of a viscoelastic piezoelectric body. Adv. Math. Sci. Appl. 14 (2004) 25–40. [MathSciNet] [Google Scholar]
  23. M. Sofonea and E.-H. Essoufi, A piezoelectric contact problem with slip dependent coefficient of friction. Math. Model. Anal. 9 (2004) 229–242. [MathSciNet] [Google Scholar]
  24. M. Sofonea and Y. Ouafik, A piezoelectric contact problem with normal compliance. Appl. Math. 32 (2005) 425–442. [CrossRef] [MathSciNet] [Google Scholar]
  25. R.A. Toupin, The elastic dielectrics. J. Rational Mech. Anal. 5 (1956) 849–915. [MathSciNet] [Google Scholar]
  26. R.A. Toupin, Stress tensors in elastic dielectrics. Arch. Rational Mech. Anal. 5 (1960) 440–452. [CrossRef] [MathSciNet] [Google Scholar]
  27. R.A. Toupin, A dynamical theory of elastic dielectrics. Internat. J. Engrg. Sci. 1 (1963) 101–126. [CrossRef] [MathSciNet] [Google Scholar]
  28. N. Turbé and G.A. Maugin, On the linear piezoelectricity of composite materials. Math. Methods Appl. Sci. 14 (1991) 403–412. [CrossRef] [MathSciNet] [Google Scholar]
  29. P. Wriggers, Computational Contact Mechanics. Wiley-Verlag (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you