Free Access
Volume 43, Number 1, January-February 2009
Page(s) 173 - 208
Published online 05 December 2008
  1. M. Balabane, J. Dolbeault and H. Ounaies, Nodal solutions for a sublinear elliptic equation. Nonlinear Anal. 52 (2003) 219–237. [CrossRef] [MathSciNet]
  2. A.V. Buryak, V.V. Steblina and Y. Kivshar, Self-trapping of light beams and parametric solitons in diffractive quadratic media. Phys. Rev. A 52 (1995) 1670–1674. [CrossRef] [PubMed]
  3. A.V. Buryak, P. Di Trapani, D.V. Skryabin and S. Trillo, Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications. Phys. Rep. 370 (2002) 62–235.
  4. L. Di Menza, Transparent and absorbing conditions for the Schrödinger equation in a bounded domain. Numer. Funct. Anal. Optim. 18 (1997) 759–775. [CrossRef] [MathSciNet]
  5. G. Fibich, N. Gavish and X.-P. Wang, Singular ring solutions of critical and supercritical nonlinear Schrödinger equations. Physica D 18 (2007) 55–86. [CrossRef]
  6. W.J. Firth and D.V. Skryabin, Optical solitons carrying orbital angular momentum. Phys. Rev. Lett. 79 (1997) 2450–2453. [CrossRef]
  7. H. He, M.J. Werner and P.D. Drummond, Simultaneous solitary-wave solutions in a nonlinear parametric waveguide. Phys. Rev. E 54 (1996) 896–911. [CrossRef]
  8. J. Iaia and H. Warchall, Nonradial solutions of a semilinear elliptic equation in two dimensions. J. Diff. Equ. 119 (1995) 533–558. [CrossRef]
  9. R. Kajikiya, Norm estimates for radially symmetric solutions of semilinear elliptic equations. Trans. Amer. Math. Soc. 347 (1995) 1163–1199. [CrossRef] [MathSciNet]
  10. M.K. Kwong, Uniqueness of positive solutions of Formula in Formula . Arch. Rat. Mech. Anal. 105 (1989) 243–266.
  11. D.J.B. Lloyd and A.R. Champneys, Efficient numerical continuation and stability analysis of spatiotemporal quadratic optical solitons. SIAM J. Sci. Comput. 27 (2005) 759–773. [CrossRef] [MathSciNet]
  12. B. Malomed, P. Drummond, H. He, A. Berntson, D. Anderson and M. Lisak, Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity. Phys. Rev. E 56 (1997) 4725–4735. [CrossRef]
  13. K. McLeod, W.C. Troy and F.B. Weissler, Radial solutions of Formula with prescribed number of zeros. J. Diff. Equ. 83 (1990) 368–378. [CrossRef]
  14. T. Mizumachi, Vortex solitons for 2D focusing nonlinear Schrödinger equation. Diff. Int. Equ. 18 (2005) 431–450.
  15. I.M. Moroz, R. Penrose and P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equation. Class. Quant. Grav. 15 (1998) 2733–2742. [CrossRef]
  16. V.V. Steblina, Y. Kivshar, M. Lisak and B.A. Malomed, Self-guided beams in diffractive Formula medium: variational approach. Optics Comm. 118 (1995) 345–352. [CrossRef]
  17. P.L. Sulem and C. Sulem, The nonlinear Schrödinger equation, Self-focusing and wave collapse. AMS, Springer-Verlag (1999).
  18. I.N. Towers, B.A. Malomed and F.W. Wise, Light bullets in quadratic media with normal dispersion at the second harmonic. Phys. Rev. Lett. 90 (2003) 123902. [CrossRef] [PubMed]
  19. M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 (1983) 567–576. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you