Free Access
Issue
ESAIM: M2AN
Volume 43, Number 1, January-February 2009
Page(s) 53 - 80
DOI https://doi.org/10.1051/m2an/2008042
Published online 16 October 2008
  1. Y. Achdou, O. Pironneau and F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comp. Phys. 147 (1998) 187–218. [CrossRef] [MathSciNet] [Google Scholar]
  2. Y. Assou, D. Joyeux, A. Azouni and F. Feuillebois, Mesure par interférométrie laser du mouvement d'une particule proche d'une paroi. J. Phys. III 1 (1991) 315–330. [Google Scholar]
  3. L. Bocquet and J.-L. Barrat, Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Phys. Rev. E 49 (1994) 3079–3092. [CrossRef] [Google Scholar]
  4. J.F. Brady and G. Bossis, Stokesian dynamics. Ann. Rev. Fluid Mech. 20 (1988) 111–157. [CrossRef] [Google Scholar]
  5. D. Bresh and V. Milisic, High order multi-scale wall-laws, part I: The periodic case. Quat. Appl. Math. (to appear) ArXiv:math/0611083v2. [Google Scholar]
  6. R.G. Cox, The motion of suspended particles almost in contact. Int. J. Multiphase Flow 1 (1974) 343–371. [CrossRef] [Google Scholar]
  7. R.G. Cox and H. Brenner, The slow motion of a sphere through a viscous fluid towards a plane surface – II – Small gap width, including inertial effects. Chem. Engng. Sci. 22 (1967) 1753–1777. [CrossRef] [Google Scholar]
  8. S.L. Dance and M.R. Maxey, Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow. J. Comp. Phys. 189 (2003) 212–238. [CrossRef] [Google Scholar]
  9. B. Desjardin and M.J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146 (1999) 59–71. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Einstein, A new method of determining molecular dimensions. Ann. Phys. Leipsig 19 (1906) 289–306. [CrossRef] [Google Scholar]
  11. A. Einstein, Correction to my work: a new determination of molecular dimensions. Ann. Phys. Leipsig 34 (1911) 591–592. [CrossRef] [Google Scholar]
  12. E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ. 3 (2003) 419–441. [CrossRef] [MathSciNet] [Google Scholar]
  13. R. Glowinski, T.-W. Pan, T.I. Heslaand and D.D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 25 (1999) 755–794. [CrossRef] [Google Scholar]
  14. M. Hillairet, Lack of collision between solid bodies in a 2D constant-density incompressible viscous flow. Comm. Partial Diff. Eq. 32 (2007) 1345–1371. [CrossRef] [MathSciNet] [Google Scholar]
  15. H.H. Hu, Direct simulation of flows of solid-liquid mixtures. Int. J. Multiphase Flow 22 (1996) 335–352. [CrossRef] [Google Scholar]
  16. A.A. Johnson and T.E. Tezduyar, Simulation of multiple spheres falling in a liquid-filled tube. Comput. Methods Appl. Mech. Engrg. 134 (1996) 351–373. [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Labbé, J. Laminie and V. Louvet, CSiMoon. Calcul scientifique, méthodologie orientée objet et environnement: de l'analyse mathématique à la programmation. Technical report RT 2001-01, Laboratoire de Mathématiques, Université Paris-Sud, France (2004). [Google Scholar]
  18. N. Lecocq, F. Feuillebois, N. Anthore, R. Anthore, F. Bostel and C. Petipas, Precise measurement of particle-wall hydrodynamic interactions at low Reynolds number using laser interferometry. Phys. Fluids A 5 (1993) 3–12. [CrossRef] [Google Scholar]
  19. N. Lecoq, R. Anthore, B. Cichocki, P. Szymczak and F. Feuillebois, Drag force on a sphere moving towards a corrugated wall. J. Fluid Mech. 513 (2004) 247–264. [CrossRef] [Google Scholar]
  20. A. Lefebvre, Fluid-Particle simulations with FreeFem++, in ESAIM: Proceedings 18, J.-F. Gerbeau and S. Labbé Eds. (2007) 120–132. [Google Scholar]
  21. A. Lefebvre, Simulation numérique d'écoulements fluide/particules. Ph.D. thesis, Université Paris-Sud XI, Orsay, France (Nov. 2007). [Google Scholar]
  22. B. Maury, A many-body lubrication model. C.R. Acad. Sci. Paris 325 (1997) 1053–1058. [Google Scholar]
  23. B. Maury, Direct simulation of 2D fluid-particle flows in biperiodic domains. J. Comp. Phys. 156 (1999) 325–351. [CrossRef] [MathSciNet] [Google Scholar]
  24. B. Maury, A time-stepping scheme for inelastic collisions. Numer. Math. 102 (2006) 649–679. [CrossRef] [MathSciNet] [Google Scholar]
  25. B. Maury, A gluey particle model, in ESAIM: Proceedings 18, J.-F. Gerbeau and S. Labbé Eds. (2007) 133–142. [Google Scholar]
  26. S. Nasseri, N. Phan-Thien and X.J. Fan, Lubrication approximation in completed double layer boundary element method. Comput. Mech. 26 (2000) 388–397. [CrossRef] [Google Scholar]
  27. N.A. Patankar, P. Singh, D.D. Joseph, R. Glowinski and T.-W. Pan, A new formulations for the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 26 (2000) 1509–1524. [CrossRef] [Google Scholar]
  28. S. Richardson, A model for the boundary condition of a porous material. Part 2. J. Fluid Mech. 49 (1971) 327–336. [CrossRef] [Google Scholar]
  29. J.A. San Matín, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161 (2002) 113–147. [CrossRef] [MathSciNet] [Google Scholar]
  30. P. Singh, T.I. Hesla and D.D. Joseph, Distributed Lagrange multiplier method for particulate flows with collisions. Int. J. Multiphase Flow 29 (2003) 495–509. [CrossRef] [Google Scholar]
  31. J.R. Smart and D.T. Leighton, Measurement of the hydrodynamic roughness of non colloidal spheres. Phys. Fluids A 1 (1989) 52. [CrossRef] [Google Scholar]
  32. D.E. Stewart, Rigid-body dynamics with friction and impact. SIAM Rev. 42 (2000) 3–39. [CrossRef] [MathSciNet] [Google Scholar]
  33. T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations 8 (2003) 1499–1532. [MathSciNet] [Google Scholar]
  34. T. Takahashi, Existence of strong solutions for the problem of a rigid-fluid system. C.R. Math. Acad. Sci. Paris 336 (2003) 453–458. [CrossRef] [MathSciNet] [Google Scholar]
  35. G.I. Taylor, A model for the boundary condition of a porous material. Part 1. J. Fluid Mech. 49 (1971) 319–326. [CrossRef] [Google Scholar]
  36. O.I. Vinogradova and G.E. Yacubov, Surface roughness and hydrodynamic boundary conditions. Phys. Rev. E 73 (2006) 045302(R). [Google Scholar]
  37. D. Wan and S. Turek, Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method. Int. J. Numer. Meth. Fluids 51 (2006) 531–566. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you