Free Access
Volume 43, Number 2, March-April 2009
Page(s) 377 - 398
Published online 05 December 2008
  1. I. Babuška, The finite element method with lagrangian multipliers. Numer. Math. 20 (1973) 179–192. [CrossRef] [Google Scholar]
  2. E. Bécache, P. Joly and C. Tsogka, Éléments finis mixtes et condensation de masse en élastodynamique linéaire, (i) Construction. C. R. Acad. Sci. Paris Sér. I 325 (1997) 545–550. [Google Scholar]
  3. E. Bécache, P. Joly and C. Tsogka, An analysis of new mixed finite elements for the approximation of wave propagation problems. SINUM 37 (2000) 1053–1084. [Google Scholar]
  4. E. Bécache, P. Joly and C. Tsogka, Fictitious domains, mixed finite elements and perfectly matched layers for 2d elastic wave propagation. J. Comp. Acoust. 9 (2001) 1175–1203. [Google Scholar]
  5. E. Bécache, P. Joly and C. Tsogka, A new family of mixed finite elements for the linear elastodynamic problem. SINUM 39 (2002) 2109–2132. [Google Scholar]
  6. E. Bécache, A. Chaigne, G. Derveaux and P. Joly, Time-domain simulation of a guitar: Model and method. J. Acoust. Soc. Am. 6 (2003) 3368–3383. [Google Scholar]
  7. E. Bécache, J. Rodríguez and C. Tsogka, On the convergence of the fictitious domain method for wave equation problems. Technical Report RR-5802, INRIA (2006). [Google Scholar]
  8. E. Bécache, J. Rodríguez and C. Tsogka, A fictitious domain method with mixed finite elements for elastodynamics. SIAM J. Sci. Comput. 29 (2007) 1244–1267. [CrossRef] [MathSciNet] [Google Scholar]
  9. J.P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comp. Phys. 114 (1994) 185–200. [CrossRef] [Google Scholar]
  10. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). [Google Scholar]
  11. F. Collino and C. Tsogka, Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heteregeneous media. Geophysics 66 (2001) 294–307. [Google Scholar]
  12. F. Collino, P. Joly and F. Millot, Fictitious domain method for unsteady problems: Application to electromagnetic scattering. J. Comput. Phys. 138 (1997) 907–938. [CrossRef] [MathSciNet] [Google Scholar]
  13. S. Garcès, Application des méthodes de domaines fictifs à la modélisation des structures rayonnantes tridimensionnelles. Ph.D. Thesis, SupAero, France (1998). [Google Scholar]
  14. V. Girault and R. Glowinski, Error analysis of a fictitious domain method applied to a Dirichlet problem. Japan J. Indust. Appl. Math. 12 (1995) 487–514. [CrossRef] [MathSciNet] [Google Scholar]
  15. V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations - Theory and algorithms, Springer Series in Computational Mathematics 5. Springer-Verlag, Berlin (1986). [Google Scholar]
  16. R. Glowinski, Numerical methods for fluids, Part 3, Chapter 8, in Handbook of Numerical Analysis IX, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (2003) x+1176. [Google Scholar]
  17. R. Glowinski and Y. Kuznetsov, On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrange multiplier method. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 693–698. [Google Scholar]
  18. R. Glowinski, T.W. Pan and J. Periaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg. 111 (1994) 283–303. [Google Scholar]
  19. P. Grisvard, Singularities in boundary value problems. Springer-Verlag, Masson (1992). [Google Scholar]
  20. E. Heikkola, Y.A. Kuznetsov, P. Neittaanmäki and J. Toivanen, Fictitious domain methods for the numerical solution of two-dimensional scattering problems. J. Comput. Phys. 145 (1998) 89–109. [CrossRef] [MathSciNet] [Google Scholar]
  21. E. Heikkola, T. Rossi and J. Toivanen, A domain embedding method for scattering problems with an absorbing boundary or a perfectly matched layer. J. Comput. Acoust. 11 (2003) 159–174. [CrossRef] [MathSciNet] [Google Scholar]
  22. E. Hille and R.S. Phillips, Functional analysis and semigroups, Colloquium Publications 31. Rev. edn., Providence, R.I., American Mathematical Society (1957). [Google Scholar]
  23. P. Joly and L. Rhaouti. Analyse numérique - Domaines fictifs, éléments finis H(div) et condition de Neumann : le problème de la condition inf-sup. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 1225–1230. [Google Scholar]
  24. Yu.A. Kuznetsov, Fictitious component and domain decomposition methods for the solution of eigenvalue problems, in Computing methods in applied sciences and engineering VII (Versailles, 1985), North-Holland, Amsterdam (1986) 155–172. [Google Scholar]
  25. J.C. Nédélec, A new family of mixed finite elements in . Numer. Math. 50 (1986) 57–81. [CrossRef] [MathSciNet] [Google Scholar]
  26. L. Rhaouti, Domaines fictifs pour la modélisation d'un probème d'interaction fluide-structure : simulation de la timbale. Ph.D. Thesis, Paris IX, France (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you