Free Access
Volume 43, Number 4, July-August 2009
Special issue on Numerical ODEs today
Page(s) 743 - 755
Published online 08 July 2009
  1. E. Akhmatskaya and S. Reich, GSHMC: An efficient method for molecular simulations. J. Comput. Phys. 227 (2008) 4934–4954. [CrossRef] [MathSciNet] [Google Scholar]
  2. E. Akhmatskaya, N. Bou-Rabee and S. Reich, Generalized hybrid Monte Carlo methods with and without momentum flip. J. Comput. Phys. 227 (2008) 4934–4954. [CrossRef] [MathSciNet] [Google Scholar]
  3. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids. Clarendon Press, Oxford (1987) [Google Scholar]
  4. S.D. Bond, B.J. Leimkuhler and B.B. Laird, The Nosé-Poincaré method for constant temperature molecular dynamics. J. Comput. Phys. 151 (1999) 114–134. [Google Scholar]
  5. G. Bussi, D. Donadio and M. Parrinello, Canonical sampling through velocity rescaling. J. Chem. Phys. 126 (2007) 014101. [CrossRef] [PubMed] [Google Scholar]
  6. S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Hybrid Monte-Carlo. Phys. Lett. B 195 (1987) 216–222. [NASA ADS] [CrossRef] [Google Scholar]
  7. D. Frenkel and B. Smit, Understanding Molecular Simulation. Academic Press, New York (1996). [Google Scholar]
  8. W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31 (1985) 1695–1697. [CrossRef] [PubMed] [Google Scholar]
  9. A.M. Horowitz, A generalized guided Monte-Carlo algorithm. Phys. Lett. B 268 (1991) 247–252. [CrossRef] [Google Scholar]
  10. J.A. Izaguirre and S.S. Hampton, Shadow Hybrid Monte Carlo: An efficient propagator in phase space of macromolecules. J. Comput. Phys. 200 (2004) 581–604. [CrossRef] [Google Scholar]
  11. A.D. Kennedy and B. Pendleton, Cost of the generalized hybrid Monte Carlo algorithm for free field theory. Nucl. Phys. B 607 (2001) 456–510. [CrossRef] [Google Scholar]
  12. P. Klein, Pressure and temperature control in molecular dynamics simulations: a unitary approach in discrete time. Modelling Simul. Mater. Sci. Eng. 6 (1998) 405–421. [CrossRef] [Google Scholar]
  13. F. Legoll, M. Luskin and R. Moeckel, Non-ergodicity of the Nose-Hoover thermostatted harmonic oscillator. Arch. Ration. Mech. Anal. 184 (2007) 449–463. [CrossRef] [MathSciNet] [Google Scholar]
  14. B. Leimkuhler and C. Sweet, A Hamiltonian formulation for recursive multiple thermostats in a common timescale. SIAM J. Appl. Dyn. Syst. 4 (2005) 187–216. [CrossRef] [MathSciNet] [Google Scholar]
  15. B. Leimkuhler, E. Noorizadeh and F. Theil, A gentle ergodic thermostat for molecular dynamics. J. Stat. Phys. (2009), doi: 10.1007/s10955-009-9734-0. [Google Scholar]
  16. J.S. Liu, Monte Carlo Strategies in Scientific Computing. Springer-Verlag, New York (2001). [Google Scholar]
  17. G.J. Martyna, M.L. Klein and M. Tuckerman, Nose-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 97 (1992) 2635–2643. [NASA ADS] [CrossRef] [Google Scholar]
  18. S. Nosé, A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81 (1984) 511–519. [NASA ADS] [CrossRef] [Google Scholar]
  19. B. Oksendal, Stochastic Differential Equations. 5th Edition, Springer-Verlag, Berlin-Heidelberg (2000). [Google Scholar]
  20. J.-P. Ryckaert and A. Bellemans, Molecular dynamics of liquid alkanes. Faraday Discussions 66 (1978) 95–107. [CrossRef] [Google Scholar]
  21. A. Samoletov, M.A.J. Chaplain and C.P. Dettmann, Thermostats for “slow" configurational modes. J. Stat. Phys. 128 (2007) 1321–1336. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you