Free Access
Volume 43, Number 4, July-August 2009
Special issue on Numerical ODEs today
Page(s) 743 - 755
Published online 08 July 2009
  1. E. Akhmatskaya and S. Reich, GSHMC: An efficient method for molecular simulations. J. Comput. Phys. 227 (2008) 4934–4954. [CrossRef] [MathSciNet]
  2. E. Akhmatskaya, N. Bou-Rabee and S. Reich, Generalized hybrid Monte Carlo methods with and without momentum flip. J. Comput. Phys. 227 (2008) 4934–4954. [CrossRef] [MathSciNet]
  3. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids. Clarendon Press, Oxford (1987)
  4. S.D. Bond, B.J. Leimkuhler and B.B. Laird, The Nosé-Poincaré method for constant temperature molecular dynamics. J. Comput. Phys. 151 (1999) 114–134. [CrossRef] [MathSciNet]
  5. G. Bussi, D. Donadio and M. Parrinello, Canonical sampling through velocity rescaling. J. Chem. Phys. 126 (2007) 014101. [CrossRef] [PubMed]
  6. S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Hybrid Monte-Carlo. Phys. Lett. B 195 (1987) 216–222. [NASA ADS] [CrossRef]
  7. D. Frenkel and B. Smit, Understanding Molecular Simulation. Academic Press, New York (1996).
  8. W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31 (1985) 1695–1697. [CrossRef] [PubMed]
  9. A.M. Horowitz, A generalized guided Monte-Carlo algorithm. Phys. Lett. B 268 (1991) 247–252. [CrossRef]
  10. J.A. Izaguirre and S.S. Hampton, Shadow Hybrid Monte Carlo: An efficient propagator in phase space of macromolecules. J. Comput. Phys. 200 (2004) 581–604. [CrossRef]
  11. A.D. Kennedy and B. Pendleton, Cost of the generalized hybrid Monte Carlo algorithm for free field theory. Nucl. Phys. B 607 (2001) 456–510. [CrossRef]
  12. P. Klein, Pressure and temperature control in molecular dynamics simulations: a unitary approach in discrete time. Modelling Simul. Mater. Sci. Eng. 6 (1998) 405–421. [CrossRef]
  13. F. Legoll, M. Luskin and R. Moeckel, Non-ergodicity of the Nose-Hoover thermostatted harmonic oscillator. Arch. Ration. Mech. Anal. 184 (2007) 449–463. [CrossRef] [MathSciNet]
  14. B. Leimkuhler and C. Sweet, A Hamiltonian formulation for recursive multiple thermostats in a common timescale. SIAM J. Appl. Dyn. Syst. 4 (2005) 187–216. [CrossRef] [MathSciNet]
  15. B. Leimkuhler, E. Noorizadeh and F. Theil, A gentle ergodic thermostat for molecular dynamics. J. Stat. Phys. (2009), doi: 10.1007/s10955-009-9734-0.
  16. J.S. Liu, Monte Carlo Strategies in Scientific Computing. Springer-Verlag, New York (2001).
  17. G.J. Martyna, M.L. Klein and M. Tuckerman, Nose-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 97 (1992) 2635–2643. [CrossRef]
  18. S. Nosé, A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81 (1984) 511–519. [CrossRef]
  19. B. Oksendal, Stochastic Differential Equations. 5th Edition, Springer-Verlag, Berlin-Heidelberg (2000).
  20. J.-P. Ryckaert and A. Bellemans, Molecular dynamics of liquid alkanes. Faraday Discussions 66 (1978) 95–107. [CrossRef]
  21. A. Samoletov, M.A.J. Chaplain and C.P. Dettmann, Thermostats for “slow" configurational modes. J. Stat. Phys. 128 (2007) 1321–1336. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you