Free Access
Volume 43, Number 4, July-August 2009
Special issue on Numerical ODEs today
Page(s) 805 - 823
Published online 08 July 2009
  1. U. Ascher and L. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia, USA (1998). [Google Scholar]
  2. K.E. Brenan, S.L. Campbell and L.R. Petzold, The Numerical Solution of Initial Value Problems in Ordinary Differential-Algebraic Equations. SIAM, Philadelphia, USA (1996). [Google Scholar]
  3. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer (1991). [Google Scholar]
  4. P. Brown, A. Hindmarsh and L.R. Petzold, Using Krylow methods in the solution of large-scale differential-algebraic systems. SIAM J. Sci. Comp. 15 (1994) 1467–1488. [CrossRef] [MathSciNet] [Google Scholar]
  5. COMSOL Multiphysics User Manual, Version 3.4 (2007). [Google Scholar]
  6. M. Cross, J. Rogers, R. Lifshitz and A. Zumdieck, Synchronization by reactive coupling and nonlinear frequency pulling. Phys. Rev. E 73 (2006) 036205. [CrossRef] [MathSciNet] [Google Scholar]
  7. F. Dietrich, Ein Zweiskalenansatz zur Modellierung der Skelettmuskulatur. Diploma Thesis, TU München, Germany (2007). [Google Scholar]
  8. E. Gallasch and T. Kenner, Characterisation of arm microvibration recorded on an accelometer. Eur. J. Appl. Physiol. 75 (1997) 226–232. [Google Scholar]
  9. E. Gallasch and M. Moser, Effects of an eight-day space flight on microvibration and physiological tremor. Am. J. Physiol. 273 (1997) R86–R92. [PubMed] [Google Scholar]
  10. C. Gear, G. Gupta and B. Leimkuhler, Automatic integration of the Euler-Lagrange equations with constraints. J. Comp. Appl. Math. 12 (1985) 77–90. [CrossRef] [Google Scholar]
  11. A. Gielen, C. Oomens, P. Bovendeerd and T. Arts, A finite element approach for skeletal muscle using a distributed moment model of contraction. Comp. Meth. Biomech. Biomed. Engng. 3 (2000) 231–244. [CrossRef] [Google Scholar]
  12. A. Goldbeter, Biochemical Oscillations and Cellular Rhythms. Cambridge University Press (1996). [Google Scholar]
  13. G. Golub and C. van Loan, Matrix Computations. Third Edition, John Hopkins University Press, Baltimore (1996). [Google Scholar]
  14. A.V. Hill, The heat of shortening and the dynamic constants of muscle. P. Roy. Soc. Lond. B Bio. 126 (1938) 136–195. [Google Scholar]
  15. T.J. Hughes, The Finite Element Method. Prentice Hall, Englewood Cliffs (1987). [Google Scholar]
  16. A.F. Huxley, Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7 (1957) 255–318. [PubMed] [Google Scholar]
  17. E. Kuhl, K. Garikipati, E.M. Arruda and K. Grosh, Remodeling of biological tissue: Mechanically induced reorientation of a transversely isotropic chain network. J. Mech. Physics Solids 53 (2005) 1552–1573. [CrossRef] [Google Scholar]
  18. G.T. Line, J. Sundnes and A. Tveito, An operator splitting method for solving the Bidomain equations coupled to a volume conductor model for the torso. Math. Biosci. 194 (2005) 233–248. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. Ch. Lubich, Integration of stiff mechanical systems by Runge-Kutta methods. ZAMP 44 (1993) 1022–1053. [Google Scholar]
  20. J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity. Dover Publications (1994). [Google Scholar]
  21. W. Maurel, N.Y. Wu and D. Thalmann, Biomechanical models for soft tissue simulation. Springer (1998). [Google Scholar]
  22. P. Matthews, R. Mirollo and St. Strogatz, Dynamics of a large system of coupled nonlinear oscillators. Physica D 52 (1991) 293–331. [CrossRef] [MathSciNet] [Google Scholar]
  23. U. Randoll, Matrix-Rhythm-Therapy of Dynamic Illnesses, in Extracellular Matrix and Groundregulation System in Health and Disease, H. Heine, M. Rimpler, G. Fischer Eds., Stuttgart-Jena-New York (1997) 57–70. [Google Scholar]
  24. B. Simeon, On Lagrange multipliers in flexible multibody dynamics. Comput. Methods Appl. Mech. Eng. 195 (2006) 6993–7005. [Google Scholar]
  25. [Google Scholar]
  26. S. Thiemann, Modellierung und numerische Simulation der Skelettmuskulatur. Diploma Thesis, TU München, Germany (2006). [Google Scholar]
  27. G.I. Zahalak and I. Motabarzadeh, A re-examination of calcium activation in the Huxley cross-bridge model. J. Biomech. Engng. 119 (1997) 20–29. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you