Free Access
Issue
ESAIM: M2AN
Volume 44, Number 1, January-February 2010
Page(s) 189 - 206
DOI https://doi.org/10.1051/m2an/2009046
Published online 16 December 2009
  1. G. Akrivis and C. Makridakis, Galerkin time-stepping methods for nonlinear parabolic equations. ESAIM: M2AN 38 (2004) 261–289. [CrossRef] [EDP Sciences] [Google Scholar]
  2. A. Borzi and R. Griesse, Distributed optimal control for lambda-omega systems. J. Numer. Math. 14 (2006) 17–40. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Brezis, Analyse fonctionnelle – Theorie et applications. Masson, Paris, France (1983). [Google Scholar]
  4. K. Chrysafinos, Discontinous Galerkin approximations for distributed optimal control problems constrained to linear parabolic PDE's. Int. J. Numer. Anal. Mod. 4 (2007) 690–712. [Google Scholar]
  5. K. Chrysafinos and N.J. Walkington, Error estimates for the discontinuous Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 44 (2006) 349–366. [CrossRef] [MathSciNet] [Google Scholar]
  6. K. Chrysafinos and N.J. Walkington, Lagrangian and moving mesh methods for the convection diffusion equation. ESAIM: M2AN 42 (2008) 25–55. [CrossRef] [EDP Sciences] [Google Scholar]
  7. K. Chrysafinos and N.J. Walkington, Discontinuous Galerkin approximations of the Stokes and Navier-Stokes equations. Math. Comp. (to appear), available at http://www.math.cmu.edu/ noelw. [Google Scholar]
  8. K. Chrysafinos, M.D. Gunzburger and L.S. Hou, Semidiscrete approximations of optimal Robin boundary control problems constrained by semilinear parabolic PDE. J. Math. Anal. Appl. 323 (2006) 891–912. [CrossRef] [MathSciNet] [Google Scholar]
  9. P.G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics 40. SIAM (2002). [Google Scholar]
  10. K. Dechelnick and M. Hinze, Semidiscretization and error estimates for distributed control of the instationary Navier-Stokes equations. Numer. Math. 97 (2004) 297–320. [CrossRef] [MathSciNet] [Google Scholar]
  11. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43–77. [CrossRef] [MathSciNet] [Google Scholar]
  12. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. II. Optimal error estimates in Formula and Formula . SIAM J. Numer. Anal. 32 (1995) 706–740. [CrossRef] [MathSciNet] [Google Scholar]
  13. K. Ericksson and C. Johnson, Adaptive finite element methods for parabolic problems IV: Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729–1749. [CrossRef] [MathSciNet] [Google Scholar]
  14. K. Eriksson, C. Johnson and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO Modél. Math. Anal. Numér. 29 (1985) 611–643. [Google Scholar]
  15. D. Estep and S. Larsson, The discontinuous Galerkin method for semilinear parabolic equations. RAIRO Modél. Math. Anal. Numér. 27 (1993) 35–54. [MathSciNet] [Google Scholar]
  16. L. Evans, Partial Differential Equations. AMS, Providence, USA (1998). [Google Scholar]
  17. R. Falk, Approximation of a class of otimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44 (1973) 28–47. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Fursikov, Optimal control of distributed systems – Theory and applications. AMS, Providence, USA (2000). [Google Scholar]
  19. M. Garvie and C. Trenchea, Optimal control of a nutrient-phytoplankton-zooplankton-fish system. SIAM J. Control Optim. 46 (2007) 775–791. [CrossRef] [MathSciNet] [Google Scholar]
  20. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes. Springer-Verlag, New York, USA (1986). [Google Scholar]
  21. M.D. Gunzburger, Perspectives in flow control and optimization, Advances in Design and Control. SIAM, Philadelphia, USA (2003). [Google Scholar]
  22. M.D. Gunzburger and S. Manservisi, Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal. 37 (2000) 1481–1512. [CrossRef] [MathSciNet] [Google Scholar]
  23. M.D. Gunzburger, L.S. Hou and T. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls. RAIRO Modél. Math. Anal. Numer. 25 (1991) 711–748. [MathSciNet] [Google Scholar]
  24. M.D. Gunzburger, S.-D. Yang, and W. Zhu, Analysis and discretization of an optimal control problem for the forced Fisher equation. Discrete Contin. Dyn. Syst. Ser. B 8 (2007) 569–587. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. Hinze and K. Kunisch, Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 40 (2001) 925–946. [CrossRef] [MathSciNet] [Google Scholar]
  26. L.S. Hou, and H.-D. Kwon, Analysis and approximations of a terminal-state optimal control problem constrained by semilinear parabolic PDEs. Int. J. Numer. Anal. Model. 4 (2007) 713–728. [MathSciNet] [Google Scholar]
  27. G. Knowles, Finite element approximation of parabolic time optimal control problems. SIAM J. Control Optim. 20 (1982) 414–427. [CrossRef] [MathSciNet] [Google Scholar]
  28. I. Lasiecka, Rietz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditions. SIAM J. Control Optim. 22 (1984) 477–500. [CrossRef] [MathSciNet] [Google Scholar]
  29. I. Lasiecka and R. Triggiani, Control theory for partial differential equations. Cambridge University Press, Cambridge, UK (2000). [Google Scholar]
  30. J.-L. Lions, Some aspects of the control of distributed parameter systems. Conference Board of the Mathematical Sciences, SIAM (1972). [Google Scholar]
  31. W.-B. Liu and N. Yan, A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93 (2003) 497–521. [CrossRef] [MathSciNet] [Google Scholar]
  32. W.-B. Liu, H.-P. Ma, T. Tang and N. Yan, A posteriori error estimates for DG time-stepping method for optimal control problems governed by parabolic equations. SIAM J. Numer. Anal. 42 (2004) 1032–1061. [CrossRef] [MathSciNet] [Google Scholar]
  33. K. Malanowski, Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems. Appl. Math. Optim. 8 (1981) 69–95. [CrossRef] [Google Scholar]
  34. D. Meidner and B. Vexler, Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46 (2007) 116–142. [CrossRef] [MathSciNet] [Google Scholar]
  35. D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: Problems without control constraints. SIAM J. Control Optim. 47 (2008) 1150–1177. [CrossRef] [MathSciNet] [Google Scholar]
  36. P. Neittaanmaki and D. Tiba, Optimal control of nonlinear parabolic systems – Theory, algorithms and applications. M. Dekker, New York, USA (1994). [Google Scholar]
  37. A. Rösch, Error estimates for parabolic optimal control problems with control constraints. Zeitschrift Anal. Anwendungen 23 (2004) 353–376. [Google Scholar]
  38. R. Temam, Navier-Stokes equations. North Holland (1977). [Google Scholar]
  39. V. Thomée, Galerkin finite element methods for parabolic problems. Spinger-Verlag, Berlin, Germany (1997). [Google Scholar]
  40. F. Tröltzsch, Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems. International Series of Numerical Math. 111 (1993) 57–68. [Google Scholar]
  41. F. Tröltzsch, Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems – Strong convergence of optimal controls. Appl. Math. Optim. 29 (1994) 309–329. [CrossRef] [MathSciNet] [Google Scholar]
  42. N.J. Walkington, Compactness properties of the DG and CG time stepping schemes for parabolic equations. SINUM (June 2008) (submitted), preprint available at http://www.math.cmu.edu/~noelw. [Google Scholar]
  43. R. Winther, Error estimates for a Galerkin approximation of a parabolic control problem. Ann. Math. Pura Appl. 117 (1978) 173–206. [CrossRef] [MathSciNet] [Google Scholar]
  44. R. Winther, Initial value methods for parabolic control problems. Math. Comp. 34 (1980) 115–125. [CrossRef] [MathSciNet] [Google Scholar]
  45. E. Zeidler, Nonlinear functional analysis and its applications, II/B Nonlinear monotone operators. Springer-Verlag, New York, USA (1990). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you