Free Access
Volume 44, Number 2, March-April 2010
Page(s) 371 - 400
Published online 27 January 2010
  1. M.R. Baer and J.W. Nunziato, A two phase mixture theory for the deflagration to detonation transition (ddt) in reactive granular materials. Int. J. Multiph. Flow 16 (1986) 861–889. [CrossRef]
  2. F. Coquel, K. El Amine, E. Godlewski, B. Perthame and P. Rascle, A numerical method using upwind schemes for the resolution of two-phase flows. J. Comput. Phys. 136 (1997) 272–288. [CrossRef] [MathSciNet]
  3. F. Coquel, T. Gallouët, J.-M. Hérard and N. Seguin, Closure laws for a two-fluid two-pressure model. C. R. Math. Acad. Sci. Paris 334 (2002) 927–932. [CrossRef] [MathSciNet]
  4. T. Gallouët, J.-M. Hérard and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Models Methods Appl. Sci. 14 (2004) 663–700. [CrossRef] [MathSciNet]
  5. D. Gidaspow, Multiphase flow and fluidization – Continuum and kinetic theory descriptions. Academic Press Inc., Boston, USA (1994).
  6. E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences 118. Springer-Verlag, New York, USA (1996).
  7. A. Goldshtein, M. Shapiro and C. Gutfinger, Mechanics of colisional motion of granular materials. Part 3: Self similar shock wave propagation. J. Fluid Mech. 316 (1996) 29–51. [CrossRef]
  8. P.S. Gough, Modeling of two-phase flows in guns. AIAA 66 (1979) 176–196.
  9. V. Guillemaud, Modélisation et simulation numérique des écoulements diphasiques par une approche bifluide à deux pressions. Ph.D. Thesis, Université Aix-Marseille I, France (2007).
  10. A. Harten, P.D. Lax and B. Van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35–61. [CrossRef] [MathSciNet]
  11. J.-M. Hérard and O. Hurisse, A simple method to compute standard two-fluid models. Int. J. Comput. Fluid Dyn. 19 (2005) 475–482. [CrossRef] [MathSciNet]
  12. A.K. Kapila, R. Menikoff, J.B. Bdzil, S.F. Son and D.S. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids 13 (2001) 3002–3024. [CrossRef]
  13. K.K. Kuo, V. Yang and B.B. Moore, Intragranular stress, particle-wall friction and speed of sound in granular propellant beds. J. Ballistics 4 (1980) 697–730.
  14. J. Nussbaum, Modélisation et simulation numérique d'un écoulement diphasique de la balistique intérieure. Ph.D. Thesis, Université de Strasbourg, France (2007).
  15. J. Nussbaum, P. Helluy, J.-M. Hérard and A. Carriére, Numerical simulations of gas-particle flows with combustion. Flow Turbulence Combust. 76 (2006) 403–417. [CrossRef]
  16. V.V. Rusanov, The calculation of the interaction of non-stationary shock waves with barriers. Ž. Vyčisl. Mat. i Mat. Fiz. 1 (1961) 267–279.
  17. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425–467. [CrossRef] [MathSciNet]
  18. E.F. Toro, Riemann-problem based techniques for computing reactive two-phase flows, in Proc. Third Intl. Conf. on Numerical Combustion, A. Dervieux and B. Larrouturou Eds., Lecture Notes in Physics 351, Springer, Berlin, Germany (1989) 472–481.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you