Free Access
Volume 44, Number 3, May-June 2010
Page(s) 401 - 420
Published online 04 February 2010
  1. I. Babuška and J.E. Osborn, Generalized finite element methods: Their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20 (1983) 510–536. [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Babuška, G. Caloz and J. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31 (1994) 945–981. [Google Scholar]
  3. I. Babuška, U. Banerjee and J. Osborn, On principles for the selection of shape functions for the generalized finite element method. Comput. Methods Appl. Mech. Engrg. 191 (2002) 5595–5629. [CrossRef] [MathSciNet] [Google Scholar]
  4. I. Babuška, U. Banerjee and J.E. Osborn, Generalized finite element methods – main ideas, results and perspective. Int. J. Comp. Meths. 1 (2004) 67–103. [Google Scholar]
  5. J.K. Bennighof and R.B. Lehoucq, An automated multilevel substructuring method for eigenspace computation in linear elastodynamics. SIAM J. Sci. Comput. 25 (2004) 2084–2106. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Bourquin, Component mode synthesis and eigenvalues of second order operators: Discretization and algorithm. ESAIM: M2AN 26 (1992) 385–423. [Google Scholar]
  7. F. Brezzi and L. Marini, Augmented spaces, two-level methods, and stabilizing subgrids. Int. J. Numer. Meth. Fluids 40 (2002) 31–46. [CrossRef] [Google Scholar]
  8. R.R. Craig, Jr. and M.C.C. Bampton, Coupling of substructures for dynamic analysis. AIAA J. 6 (1968) 1313–1319. [CrossRef] [Google Scholar]
  9. Y. Efendiev and T. Hou, Multiscale Finite Element Methods: Theory and Applications, Surveys and Tutorials in the Applied Mathematical Sciences 4. Springer, New York, USA (2009). [Google Scholar]
  10. U. Hetmaniuk and R.B. Lehoucq, Multilevel methods for eigenspace computations in structural dynamics, in Domain Decomposition Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng. 55, Springer-Verlag (2007) 103–114. [Google Scholar]
  11. T. Hou and X. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. [CrossRef] [MathSciNet] [Google Scholar]
  12. W.C. Hurty, Vibrations of structural systems by component-mode synthesis. J. Eng. Mech. Division ASCE 86 (1960) 51–69. [Google Scholar]
  13. J. Nolen, G. Papanicolaou and O. Pironneau, A framework for adaptive multiscale methods for elliptic problems. Multiscale Model. Simul. 7 (2008) 171–196. [CrossRef] [Google Scholar]
  14. A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations – Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, UK (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you